BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21813363)

  • 1. Breakthroughs in computational modeling of cartilage regeneration in perfused bioreactors.
    Raimondi MT; Causin P; Mara A; Nava M; Laganà M; Sacco R
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3496-9. PubMed ID: 21813363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiphysics/multiscale 2D numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor.
    Sacco R; Causin P; Zunino P; Raimondi MT
    Biomech Model Mechanobiol; 2011 Jul; 10(4):577-89. PubMed ID: 20865436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiscale approach in the computational modeling of the biophysical environment in artificial cartilage tissue regeneration.
    Causin P; Sacco R; Verri M
    Biomech Model Mechanobiol; 2013 Aug; 12(4):763-80. PubMed ID: 22975839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.
    Cinbiz MN; Tığli RS; Beşkardeş IG; Gümüşderelioğlu M; Colak U
    J Biotechnol; 2010 Nov; 150(3):389-95. PubMed ID: 20887759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
    Williams KA; Saini S; Wick TM
    Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses.
    Bilodeau K; Couet F; Boccafoschi F; Mantovani D
    Artif Organs; 2005 Nov; 29(11):906-12. PubMed ID: 16266305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.
    Hidalgo-Bastida LA; Thirunavukkarasu S; Griffiths S; Cartmell SH; Naire S
    Biotechnol Bioeng; 2012 Apr; 109(4):1095-9. PubMed ID: 22068720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic loading of growing tissue in a bioreactor: mathematical model and asymptotic analysis.
    Pohlmeyer JV; Cummings LJ
    Bull Math Biol; 2013 Dec; 75(12):2450-73. PubMed ID: 24154964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated experimental-computational approach for the study of engineered cartilage constructs subjected to combined regimens of hydrostatic pressure and interstitial perfusion.
    Moretti M; Freed LE; Padera RF; Laganà K; Boschetti F; Raimondi MT
    Biomed Mater Eng; 2008; 18(4-5):273-8. PubMed ID: 19065033
    [No Abstract]   [Full Text] [Related]  

  • 10. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration.
    Podichetty JT; Dhane DV; Madihally SV
    Biotechnol Prog; 2012 Jul; 28(4):1045-54. PubMed ID: 22473960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():183-207. PubMed ID: 22692612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
    Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow modeling in a novel non-perfusion conical bioreactor.
    Singh H; Ang ES; Lim TT; Hutmacher DW
    Biotechnol Bioeng; 2007 Aug; 97(5):1291-9. PubMed ID: 17216661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds.
    Lee SJ; Kang HW; Park JK; Rhie JW; Hahn SK; Cho DW
    Biomed Microdevices; 2008 Apr; 10(2):233-41. PubMed ID: 17885804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.
    Shakhawath Hossain M; Bergstrom DJ; Chen XB
    Biotechnol Bioeng; 2015 Dec; 112(12):2601-10. PubMed ID: 26061385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.
    Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T
    J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in silico bioreactor for simulating laboratory experiments in tissue engineering.
    Galbusera F; Cioffi M; Raimondi MT
    Biomed Microdevices; 2008 Aug; 10(4):547-54. PubMed ID: 18236161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fundamentals of tissue engineering: scaffolds and bioreactors.
    Vunjak-Novakovic G
    Novartis Found Symp; 2003; 249():34-46; discussion 46-51, 170-4, 239-41. PubMed ID: 12708648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.