These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21813416)

  • 1. CONSeQuence: prediction of reference peptides for absolute quantitative proteomics using consensus machine learning approaches.
    Eyers CE; Lawless C; Wedge DC; Lau KW; Gaskell SJ; Hubbard SJ
    Mol Cell Proteomics; 2011 Nov; 10(11):M110.003384. PubMed ID: 21813416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics.
    Mirzaei H; McBee JK; Watts J; Aebersold R
    Mol Cell Proteomics; 2008 Apr; 7(4):813-23. PubMed ID: 18089551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data.
    Qeli E; Omasits U; Goetze S; Stekhoven DJ; Frey JE; Basler K; Wollscheid B; Brunner E; Ahrens CH
    J Proteomics; 2014 Aug; 108():269-83. PubMed ID: 24878426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardization approaches in absolute quantitative proteomics with mass spectrometry.
    Calderón-Celis F; Encinar JR; Sanz-Medel A
    Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence Understands Peptide Observability and Assists With Absolute Protein Quantification.
    Zimmer D; Schneider K; Sommer F; Schroda M; Mühlhaus T
    Front Plant Sci; 2018; 9():1559. PubMed ID: 30483279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT.
    Rivers J; Simpson DM; Robertson DH; Gaskell SJ; Beynon RJ
    Mol Cell Proteomics; 2007 Aug; 6(8):1416-27. PubMed ID: 17510050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute quantification of the glycolytic pathway in yeast: deployment of a complete QconCAT approach.
    Carroll KM; Simpson DM; Eyers CE; Knight CG; Brownridge P; Dunn WB; Winder CL; Lanthaler K; Pir P; Malys N; Kell DB; Oliver SG; Gaskell SJ; Beynon RJ
    Mol Cell Proteomics; 2011 Dec; 10(12):M111.007633. PubMed ID: 21931151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational prediction of proteotypic peptides for quantitative proteomics.
    Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R
    Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics.
    Timm W; Scherbart A; Böcker S; Kohlbacher O; Nattkemper TW
    BMC Bioinformatics; 2008 Oct; 9():443. PubMed ID: 18937839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics.
    Webb-Robertson BJ; Cannon WR; Oehmen CS; Shah AR; Gurumoorthi V; Lipton MS; Waters KM
    Bioinformatics; 2008 Jul; 24(13):1503-9. PubMed ID: 18453551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards.
    Kito K; Okada M; Ishibashi Y; Okada S; Ito T
    Proteomics; 2016 May; 16(10):1457-73. PubMed ID: 27030420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel isotopic N,N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach.
    Greer T; Lietz CB; Xiang F; Li L
    J Am Soc Mass Spectrom; 2015 Jan; 26(1):107-19. PubMed ID: 25377360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute quantification strategies in proteomics based on mass spectrometry.
    Brönstrup M
    Expert Rev Proteomics; 2004 Dec; 1(4):503-12. PubMed ID: 15966845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary HPLC-ICPMS and tyrosine iodination for the absolute quantification of peptides using generic standards.
    Pereira Navaza A; Ruiz Encinar J; Ballesteros A; González JM; Sanz-Medel A
    Anal Chem; 2009 Jul; 81(13):5390-9. PubMed ID: 19489591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of proteotypic peptide libraries for protein identification.
    Craig R; Cortens JP; Beavis RC
    Rapid Commun Mass Spectrom; 2005; 19(13):1844-50. PubMed ID: 15945033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry.
    Olsson N; James P; Borrebaeck CA; Wingren C
    Mol Cell Proteomics; 2012 Aug; 11(8):342-54. PubMed ID: 22543061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.
    Liu K; Zhang J; Fu B; Xie H; Wang Y; Qian X
    Proteomics; 2014 Jul; 14(13-14):1593-603. PubMed ID: 24827140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute multiplexed protein quantification using QconCAT technology.
    Brownridge PJ; Harman VM; Simpson DM; Beynon RJ
    Methods Mol Biol; 2012; 893():267-93. PubMed ID: 22665307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster based prediction of PDZ-peptide interactions.
    Kundu K; Backofen R
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S5. PubMed ID: 24564547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.
    Baczek T; Kaliszan R
    Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.