These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 21813687)
1. Single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals. Luo F; Dittrich M; Stiles JR; Meriney SD J Neurosci; 2011 Aug; 31(31):11268-81. PubMed ID: 21813687 [TBL] [Abstract][Full Text] [Related]
2. Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone. Wachman ES; Poage RE; Stiles JR; Farkas DL; Meriney SD J Neurosci; 2004 Mar; 24(12):2877-85. PubMed ID: 15044526 [TBL] [Abstract][Full Text] [Related]
3. Quantitative freeze-fracture analysis of the frog neuromuscular junction synapse--I. Naturally occurring variability in active zone structure. Pawson PA; Grinnell AD; Wolowske B J Neurocytol; 1998 Jun; 27(5):361-77. PubMed ID: 9923981 [TBL] [Abstract][Full Text] [Related]
4. Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. Shahrezaei V; Cao A; Delaney KR J Neurosci; 2006 Dec; 26(51):13240-9. PubMed ID: 17182774 [TBL] [Abstract][Full Text] [Related]
5. Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction. Luo F; Dittrich M; Cho S; Stiles JR; Meriney SD J Neurophysiol; 2015 Apr; 113(7):2480-9. PubMed ID: 25652927 [TBL] [Abstract][Full Text] [Related]
6. A high-affinity, partial antagonist effect of 3,4-diaminopyridine mediates action potential broadening and enhancement of transmitter release at NMJs. Ojala KS; Ginebaugh SP; Wu M; Miller EW; Ortiz G; Covarrubias M; Meriney SD J Biol Chem; 2021; 296():100302. PubMed ID: 33465376 [TBL] [Abstract][Full Text] [Related]
7. The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction. Cho S; Meriney SD Eur J Neurosci; 2006 Jun; 23(12):3200-8. PubMed ID: 16820010 [TBL] [Abstract][Full Text] [Related]
8. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. Cooper RL; Winslow JL; Govind CK; Atwood HL J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756 [TBL] [Abstract][Full Text] [Related]
9. Presynaptic calcium channel localization and calcium-dependent synaptic vesicle exocytosis regulated by the Fuseless protein. Long AA; Kim E; Leung HT; Woodruff E; An L; Doerge RW; Pak WL; Broadie K J Neurosci; 2008 Apr; 28(14):3668-82. PubMed ID: 18385325 [TBL] [Abstract][Full Text] [Related]
10. The probability of quantal secretion within an array of calcium channels of an active zone. Bennett MR; Farnell L; Gibson WG Biophys J; 2000 May; 78(5):2222-40. PubMed ID: 10777722 [TBL] [Abstract][Full Text] [Related]
11. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. Hu H; Shao LR; Chavoshy S; Gu N; Trieb M; Behrens R; Laake P; Pongs O; Knaus HG; Ottersen OP; Storm JF J Neurosci; 2001 Dec; 21(24):9585-97. PubMed ID: 11739569 [TBL] [Abstract][Full Text] [Related]
12. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. Pumplin DW; Reese TS J Physiol; 1977 Dec; 273(2):443-57. PubMed ID: 202700 [TBL] [Abstract][Full Text] [Related]
13. The probability of quantal secretion near a single calcium channel of an active zone. Bennett MR; Farnell L; Gibson WG Biophys J; 2000 May; 78(5):2201-21. PubMed ID: 10777721 [TBL] [Abstract][Full Text] [Related]
14. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Holderith N; Lorincz A; Katona G; Rózsa B; Kulik A; Watanabe M; Nusser Z Nat Neurosci; 2012 Jun; 15(7):988-97. PubMed ID: 22683683 [TBL] [Abstract][Full Text] [Related]
15. Target Cell Type-Dependent Differences in Ca Éltes T; Kirizs T; Nusser Z; Holderith N J Neurosci; 2017 Feb; 37(7):1910-1924. PubMed ID: 28115484 [TBL] [Abstract][Full Text] [Related]
16. Decreased calcium influx into the neonatal rat motor nerve terminals can recruit additional neuromuscular junctions during the synapse elimination period. Santafé MM; Garcia N; Lanuza MA; Uchitel OD; Salon I; Tomàs J Neuroscience; 2002; 110(1):147-54. PubMed ID: 11882379 [TBL] [Abstract][Full Text] [Related]
17. Activity-dependent modulation of the presynaptic potassium current in the frog neuromuscular junction. Miralles F; Solsona C J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):717-32. PubMed ID: 8887778 [TBL] [Abstract][Full Text] [Related]
18. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions. Rosato-Siri MD; Piriz J; Tropper BA; Uchitel OD Eur J Neurosci; 2002 Jun; 15(12):1874-80. PubMed ID: 12099893 [TBL] [Abstract][Full Text] [Related]
19. Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals. Flink MT; Atchison WD J Pharmacol Exp Ther; 2003 May; 305(2):646-52. PubMed ID: 12606686 [TBL] [Abstract][Full Text] [Related]
20. RIM-binding proteins recruit BK-channels to presynaptic release sites adjacent to voltage-gated Ca Sclip A; Acuna C; Luo F; Südhof TC EMBO J; 2018 Aug; 37(16):. PubMed ID: 29967030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]