BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 21813737)

  • 61. Thioredoxin is transcriptionally induced upon activation of heat shock factor 2.
    Leppä S; Pirkkala L; Chow SC; Eriksson JE; Sistonen L
    J Biol Chem; 1997 Nov; 272(48):30400-4. PubMed ID: 9374530
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heat shock transcription factor (Hsf)-4b recruits Brg1 during the G1 phase of the cell cycle and regulates the expression of heat shock proteins.
    Tu N; Hu Y; Mivechi NF
    J Cell Biochem; 2006 Aug; 98(6):1528-42. PubMed ID: 16552721
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Expression of human heat shock transcription factors 1 and 2 in HeLa cells and yeast.
    Yuan CX; Czarnecka-Verner E; Gurley WB
    Cell Stress Chaperones; 1997 Dec; 2(4):263-75. PubMed ID: 9495283
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: is redundancy developmentally related?
    Shabtay A; Arad Z
    Am J Physiol Regul Integr Comp Physiol; 2006 Sep; 291(3):R566-72. PubMed ID: 16497816
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of constitutive HSF2 DNA-binding activity in mouse embryonal carcinoma cells.
    Murphy SP; Gorzowski JJ; Sarge KD; Phillips B
    Mol Cell Biol; 1994 Aug; 14(8):5309-17. PubMed ID: 8035809
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heat-shock transcription factor 2 promotes sodium butyrate-induced autophagy by inhibiting mTOR in ulcerative colitis.
    Zhang F; Wang W; Niu J; Yang G; Luo J; Lan D; Wu J; Li M; Sun Y; Wang K; Miao Y
    Exp Cell Res; 2020 Mar; 388(1):111820. PubMed ID: 31923427
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology.
    Roos-Mattjus P; Sistonen L
    FEBS J; 2022 Dec; 289(24):7710-7725. PubMed ID: 34478606
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The heat shock response, determined by QuantiGene multiplex, is impaired in HD mouse models and not caused by HSF1 reduction.
    Gomez-Paredes C; Mason MA; Taxy BA; Papadopoulou AS; Paganetti P; Bates GP
    Sci Rep; 2021 Apr; 11(1):9117. PubMed ID: 33907289
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of rat heat shock factor 2 expression during the early organogenic phase of embryogenesis.
    Min JN; Han MY; Lee SS; Kim KJ; Park YM
    Biochim Biophys Acta; 2000 Dec; 1494(3):256-62. PubMed ID: 11121583
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models.
    Fujimoto M; Takaki E; Hayashi T; Kitaura Y; Tanaka Y; Inouye S; Nakai A
    J Biol Chem; 2005 Oct; 280(41):34908-16. PubMed ID: 16051598
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Heat shock transcription factors and the hsp70 induction response in brain and kidney of the hyperthermic rat during postnatal development.
    Morrison AJ; Rush SJ; Brown IR
    J Neurochem; 2000 Jul; 75(1):363-72. PubMed ID: 10854282
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.
    Ohno Y; Egawa T; Yokoyama S; Nakai A; Sugiura T; Ohira Y; Yoshioka T; Goto K
    Acta Physiol (Oxf); 2015 Dec; 215(4):191-203. PubMed ID: 26347147
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Heat shock factor 2-like activity in mouse blastocysts.
    Mezger V; Rallu M; Morimoto RI; Morange M; Renard JP
    Dev Biol; 1994 Dec; 166(2):819-22. PubMed ID: 7813800
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Analysis of changes about hsbp1, hsf1, hsf2 AND hsp70's expression levels in rat's regenerating liver].
    Su LJ; Chang CF; Han HP; Ma H; Xu CS
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2006 Jun; 39(3):258-64. PubMed ID: 16944601
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of heat shock factors in stress-induced transcription.
    Zhang Y; Chou SD; Murshid A; Prince TL; Schreiner S; Stevenson MA; Calderwood SK
    Methods Mol Biol; 2011; 787():21-32. PubMed ID: 21898224
    [TBL] [Abstract][Full Text] [Related]  

  • 77. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Roles of heat shock factor 1 and 2 in response to proteasome inhibition: consequence on p53 stability.
    Lecomte S; Desmots F; Le Masson F; Le Goff P; Michel D; Christians ES; Le Dréan Y
    Oncogene; 2010 Jul; 29(29):4216-24. PubMed ID: 20498630
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Expression of heat shock transcription factors and heat shock protein 72 in rat retina after intravitreal injection of low dose N-methyl-D-aspartate.
    Ahn J; Piri N; Caprioli J; Munemasa Y; Kim SH; Kwong JM
    Neurosci Lett; 2008 Mar; 433(1):11-6. PubMed ID: 18242848
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.