These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 21813959)

  • 21. A phantom study on the effects of target motion in non-gated kV-CBCT imaging.
    Padmanaban S; Boopathy R; Kunjithapatham B; Sukumar P; Nagarajan V
    Australas Phys Eng Sci Med; 2010 Mar; 33(1):59-64. PubMed ID: 20333565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data.
    Yang Y; Zhong Z; Guo X; Wang J; Anderson J; Solberg T; Mao W
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):e749-56. PubMed ID: 22330989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT.
    Siewerdsen JH; Daly MJ; Bakhtiar B; Moseley DJ; Richard S; Keller H; Jaffray DA
    Med Phys; 2006 Jan; 33(1):187-97. PubMed ID: 16485425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.
    Hashemi S; Song WY; Sahgal A; Lee Y; Huynh C; Grouza V; Nordström H; Eriksson M; Dorenlot A; Régis JM; Mainprize JG; Ruschin M
    Phys Med Biol; 2017 Apr; 62(7):2521-2541. PubMed ID: 28248652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Markerless tracking of small lung tumors for stereotactic radiotherapy.
    van Sörnsen de Koste JR; Dahele M; Mostafavi H; Sloutsky A; Senan S; Slotman BJ; Verbakel WF
    Med Phys; 2015 Apr; 42(4):1640-52. PubMed ID: 25832054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiac motion correction based on partial angle reconstructed images in x-ray CT.
    Kim S; Chang Y; Ra JB
    Med Phys; 2015 May; 42(5):2560-71. PubMed ID: 25979048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative assessment by measurement and modeling of mobile target elongation in cone-beam computed tomographic imaging.
    Ali I; Alsbou N; Algan O; Herman T; Ahmad S
    J Appl Clin Med Phys; 2014 May; 15(3):4634. PubMed ID: 24892334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical phantom studies of helical cone-beam CT with exact reconstruction.
    Tan J; Li HH; Klein E; Li H; Parikh P; Yang D
    Med Phys; 2012 Aug; 39(8):4695-704. PubMed ID: 22894394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digital reconstruction of high-quality daily 4D cone-beam CT images using prior knowledge of anatomy and respiratory motion.
    Zhang Y; Yang J; Zhang L; Court LE; Gao S; Balter PA; Dong L
    Comput Med Imaging Graph; 2015 Mar; 40():30-8. PubMed ID: 25467806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Volume-of-interest cone-beam CT using a 2.35 MV beam generated with a carbon target.
    Robar JL; Parsons D; Berman A; Macdonald A
    Med Phys; 2012 Jul; 39(7):4209-18. PubMed ID: 22830754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interleaved acquisition for cross scatter avoidance in dual cone-beam CT.
    Giles W; Bowsher J; Li H; Yin FF
    Med Phys; 2012 Dec; 39(12):7719-28. PubMed ID: 23231319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-the-fly motion-compensated cone-beam CT using an a priori motion model.
    Rit S; Wolthaus J; van Herk M; Sonke JJ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):729-36. PubMed ID: 18979811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods.
    El Naqa I; Low DA; Bradley JD; Vicic M; Deasy JO
    Med Phys; 2006 Oct; 33(10):3587-600. PubMed ID: 17089825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of gated cone-beam CT to reduce respiratory motion blurring.
    Kincaid RE; Yorke ED; Goodman KA; Rimner A; Wu AJ; Mageras GS
    Med Phys; 2013 Apr; 40(4):041717. PubMed ID: 23556887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correction of image artifacts from treatment couch in cone-beam CT from kV on-board imaging.
    Ali I; Ahmad S; Alsbou N; Lovelock DM; Kriminski S; Amols H
    J Xray Sci Technol; 2011; 19(3):321-32. PubMed ID: 21876282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling and measurement of the variations of CT number distributions for mobile targets in cone-beam computed tomographic imaging.
    Ali I; Alsbou N; Ahmad S
    J Appl Clin Med Phys; 2015 Jan; 16(1):5067. PubMed ID: 25679162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-board four-dimensional digital tomosynthesis: first experimental results.
    Maurer J; Godfrey D; Wang Z; Yin FF
    Med Phys; 2008 Aug; 35(8):3574-83. PubMed ID: 18777918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.
    Jia X; Lou Y; Li R; Song WY; Jiang SB
    Med Phys; 2010 Apr; 37(4):1757-60. PubMed ID: 20443497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.