These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 21814203)

  • 61. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes.
    Gottschalk J; Skinner LC; Lippold J; Vogel H; Frank N; Jaccard SL; Waelbroeck C
    Nat Commun; 2016 May; 7():11539. PubMed ID: 27187527
    [TBL] [Abstract][Full Text] [Related]  

  • 62. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period.
    Schefuss E; Schouten S; Jansen JH; Sinninghe Damsté JS
    Nature; 2003 Mar; 422(6930):418-21. PubMed ID: 12660780
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Patterns and mechanisms of early Pliocene warmth.
    Fedorov AV; Brierley CM; Lawrence KT; Liu Z; Dekens PS; Ravelo AC
    Nature; 2013 Apr; 496(7443):43-9. PubMed ID: 23552943
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantification of dissolved iron sources to the North Atlantic Ocean.
    Conway TM; John SG
    Nature; 2014 Jul; 511(7508):212-5. PubMed ID: 25008528
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs.
    Schulz M; Prospero JM; Baker AR; Dentener F; Ickes L; Liss PS; Mahowald NM; Nickovic S; García-Pando CP; Rodríguez S; Sarin M; Tegen I; Duce RA
    Environ Sci Technol; 2012 Oct; 46(19):10390-404. PubMed ID: 22994868
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carbon dioxide release from the North Pacific abyss during the last deglaciation.
    Galbraith ED; Jaccard SL; Pedersen TF; Sigman DM; Haug GH; Cook M; Southon JR; Francois R
    Nature; 2007 Oct; 449(7164):890-3. PubMed ID: 17943127
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The evolution of the marine phosphate reservoir.
    Planavsky NJ; Rouxel OJ; Bekker A; Lalonde SV; Konhauser KO; Reinhard CT; Lyons TW
    Nature; 2010 Oct; 467(7319):1088-90. PubMed ID: 20981096
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle.
    McNeil BI; Sasse TP
    Nature; 2016 Jan; 529(7586):383-6. PubMed ID: 26791726
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The nature of deep overturning and reconfigurations of the silicon cycle across the last deglaciation.
    Dumont M; Pichevin L; Geibert W; Crosta X; Michel E; Moreton S; Dobby K; Ganeshram R
    Nat Commun; 2020 Mar; 11(1):1534. PubMed ID: 32210225
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Carbon isotope constraints on the deglacial CO₂ rise from ice cores.
    Schmitt J; Schneider R; Elsig J; Leuenberger D; Lourantou A; Chappellaz J; Köhler P; Joos F; Stocker TF; Leuenberger M; Fischer H
    Science; 2012 May; 336(6082):711-4. PubMed ID: 22461496
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modelling West Antarctic ice sheet growth and collapse through the past five million years.
    Pollard D; DeConto RM
    Nature; 2009 Mar; 458(7236):329-32. PubMed ID: 19295608
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Does sedimentary organic delta 13C record variations in quaternary ocean [CO2(aq)]?
    Rau GH; Froelich PN; Takahashi T; Des Marais DJ
    Paleoceanography; 1991 Jun; 6(3):335-47. PubMed ID: 11538490
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Climate change: Beyond the CO(2) connection.
    Zahn R
    Nature; 2009 Jul; 460(7253):335-6. PubMed ID: 19606136
    [No Abstract]   [Full Text] [Related]  

  • 74. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core.
    Elsig J; Schmitt J; Leuenberger D; Schneider R; Eyer M; Leuenberger M; Joos F; Fischer H; Stocker TF
    Nature; 2009 Sep; 461(7263):507-10. PubMed ID: 19779448
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.
    Winckler G; Anderson RF; Jaccard SL; Marcantonio F
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6119-24. PubMed ID: 27185933
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.
    Stickley CE; St John K; Koç N; Jordan RW; Passchier S; Pearce RB; Kearns LE
    Nature; 2009 Jul; 460(7253):376-9. PubMed ID: 19606146
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A record of deep-ocean dissolved O
    Stolper DA; Keller CB
    Nature; 2018 Jan; 553(7688):323-327. PubMed ID: 29310121
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Two-million-year-old snapshots of atmospheric gases from Antarctic ice.
    Yan Y; Bender ML; Brook EJ; Clifford HM; Kemeny PC; Kurbatov AV; Mackay S; Mayewski PA; Ng J; Severinghaus JP; Higgins JA
    Nature; 2019 Oct; 574(7780):663-666. PubMed ID: 31666720
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Interhemispheric Atlantic seesaw response during the last deglaciation.
    Barker S; Diz P; Vautravers MJ; Pike J; Knorr G; Hall IR; Broecker WS
    Nature; 2009 Feb; 457(7233):1097-102. PubMed ID: 19242468
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antarctic sea ice control on ocean circulation in present and glacial climates.
    Ferrari R; Jansen MF; Adkins JF; Burke A; Stewart AL; Thompson AF
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8753-8. PubMed ID: 24889624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.