These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21814278)

  • 1. Forming the lunar farside highlands by accretion of a companion moon.
    Jutzi M; Asphaug E
    Nature; 2011 Aug; 476(7358):69-72. PubMed ID: 21814278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and formation of the lunar farside highlands.
    Garrick-Bethell I; Nimmo F; Wieczorek MA
    Science; 2010 Nov; 330(6006):949-51. PubMed ID: 21071665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditions and extent of volatile loss from the Moon during formation of the Procellarum basin.
    Tartèse R; Sossi PA; Moynier F
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A South Pole-Aitken impact origin of the lunar compositional asymmetry.
    Jones MJ; Evans AJ; Johnson BC; Weller MB; Andrews-Hanna JC; Tikoo SM; Keane JT
    Sci Adv; 2022 Apr; 8(14):eabm8475. PubMed ID: 35394845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abundance and distribution of iron on the moon.
    Lucey PG; Taylor GJ; Malaret E
    Science; 1995 May; 268(5214):1150-3. PubMed ID: 17840628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric distribution of lunar impact basins caused by variations in target properties.
    Miljkovićć K; Wieczorek MA; Collins GS; Laneuville M; Neumann GA; Melosh HJ; Solomon SC; Phillips RJ; Smith DE; Zuber MT
    Science; 2013 Nov; 342(6159):724-6. PubMed ID: 24202170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large impact cratering during lunar magma ocean solidification.
    Miljković K; Wieczorek MA; Laneuville M; Nemchin A; Bland PA; Zuber MT
    Nat Commun; 2021 Sep; 12(1):5433. PubMed ID: 34521860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing the late-accretion history of the Moon.
    Zhu MH; Artemieva N; Morbidelli A; Yin QZ; Becker H; Wünnemann K
    Nature; 2019 Jul; 571(7764):226-229. PubMed ID: 31292556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane.
    Tian HC; Wang H; Chen Y; Yang W; Zhou Q; Zhang C; Lin HL; Huang C; Wu ST; Jia LH; Xu L; Zhang D; Li XG; Chang R; Yang YH; Xie LW; Zhang DP; Zhang GL; Yang SH; Wu FY
    Nature; 2021 Dec; 600(7887):59-63. PubMed ID: 34666339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LUNAR VOLATILE DEPLETION DUE TO INCOMPLETE ACCRETION WITHIN AN IMPACT-GENERATED DISK.
    Canup RM; Visscher C; Salmon J; Fegley B
    Nat Geosci; 2015; 8():918-921. PubMed ID: 31360221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover.
    Ding L; Zhou R; Yuan Y; Yang H; Li J; Yu T; Liu C; Wang J; Li S; Gao H; Deng Z; Li N; Wang Z; Gong Z; Liu G; Xie J; Wang S; Rong Z; Deng D; Wang X; Han S; Wan W; Richter L; Huang L; Gou S; Liu Z; Yu H; Jia Y; Chen B; Dang Z; Zhang K; Li L; He X; Liu S; Di K
    Sci Robot; 2022 Jan; 7(62):eabj6660. PubMed ID: 35044796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock.
    Borg LE; Shearer CK; Asmerom Y; Papike JJ
    Nature; 2004 Nov; 432(7014):209-11. PubMed ID: 15538366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon.
    Touboul M; Puchtel IS; Walker RJ
    Nature; 2015 Apr; 520(7548):530-3. PubMed ID: 25855299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dry lunar mantle reservoir for young mare basalts of Chang'e-5.
    Hu S; He H; Ji J; Lin Y; Hui H; Anand M; Tartèse R; Yan Y; Hao J; Li R; Gu L; Guo Q; He H; Ouyang Z
    Nature; 2021 Dec; 600(7887):49-53. PubMed ID: 34666337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon.
    Deutsch AN; Neumann GA; Head JW; Wilson L
    Icarus; 2019 Oct; 331():192-208. PubMed ID: 32550742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siderophile element constraints on the origin of the Moon.
    Walker RJ
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130258. PubMed ID: 25114313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major compositional units of the moon: lunar prospector thermal and fast neutrons.
    Feldman WC; Barraclough BL; Maurice S; Elphic RC; Lawrence DJ; Thomsen DR; Binder AB
    Science; 1998 Sep; 281(5382):1489-93. PubMed ID: 9727971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth.
    Ćuk M; Hamilton DP; Lock SJ; Stewart ST
    Nature; 2016 Nov; 539(7629):402-406. PubMed ID: 27799656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accretion of the Moon from non-canonical discs.
    Salmon J; Canup RM
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130256. PubMed ID: 25114307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.
    Karato S
    Proc Jpn Acad Ser B Phys Biol Sci; 2014; 90(3):97-103. PubMed ID: 24621956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.