BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21814557)

  • 1. Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres.
    Wendt H; Hillmer A; Reimers K; Kuhbier JW; Schäfer-Nolte F; Allmeling C; Kasper C; Vogt PM
    PLoS One; 2011; 6(7):e21833. PubMed ID: 21814557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between spider silk and cells--NIH/3T3 fibroblasts seeded on miniature weaving frames.
    Kuhbier JW; Allmeling C; Reimers K; Hillmer A; Kasper C; Menger B; Brandes G; Guggenheim M; Vogt PM
    PLoS One; 2010 Aug; 5(8):e12032. PubMed ID: 20711495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model.
    Schäfer-Nolte F; Hennecke K; Reimers K; Schnabel R; Allmeling C; Vogt PM; Kuhbier JW; Mirastschijski U
    Ann Surg; 2014 Apr; 259(4):781-92. PubMed ID: 23873006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofabrication of cell-loaded 3D spider silk constructs.
    Schacht K; Jüngst T; Schweinlin M; Ewald A; Groll J; Scheibel T
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2816-20. PubMed ID: 25640578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit.
    Allmeling C; Jokuszies A; Reimers K; Kall S; Vogt PM
    J Cell Mol Med; 2006; 10(3):770-7. PubMed ID: 16989736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink.
    Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH
    Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silkworm and spider silk scaffolds for chondrocyte support.
    Gellynck K; Verdonk PC; Van Nimmen E; Almqvist KF; Gheysens T; Schoukens G; Van Langenhove L; Kiekens P; Mertens J; Verbruggen G
    J Mater Sci Mater Med; 2008 Nov; 19(11):3399-409. PubMed ID: 18545943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Changes in Spider Dragline Silk after Repeated Supercontraction-Stretching Processes.
    Hu L; Chen Q; Yao J; Shao Z; Chen X
    Biomacromolecules; 2020 Dec; 21(12):5306-5314. PubMed ID: 33206498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spider Silk for Tissue Engineering Applications.
    Salehi S; Koeck K; Scheibel T
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico-chemical characterization of Antheraea mylitta silk mats for wound healing applications.
    Darshan GH; Kong D; Gautrot J; Vootla S
    Sci Rep; 2017 Sep; 7(1):10344. PubMed ID: 28871135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of direct or indirect contact for the cytotoxicity and blood compatibility of spider silk.
    Kuhbier JW; Coger V; Mueller J; Liebsch C; Schlottmann F; Bucan V; Vogt PM; Strauss S
    J Mater Sci Mater Med; 2017 Aug; 28(8):127. PubMed ID: 28721663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks.
    Dong Q; Fang G; Huang Y; Hu L; Yao J; Shao Z; Ling S; Chen X
    J Mater Chem B; 2020 Jan; 8(1):168-176. PubMed ID: 31789330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary investigations of spider silk in wounds in vivo - Implications for an innovative wound dressing.
    Liebsch C; Bucan V; Menger B; Köhne F; Waldmann KH; Vaslaitis D; Vogt PM; Strauss S; Kuhbier JW
    Burns; 2018 Nov; 44(7):1829-1838. PubMed ID: 30057335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve-associated fibroblasts.
    Millesi F; Weiss T; Mann A; Haertinger M; Semmler L; Supper P; Pils D; Naghilou A; Radtke C
    FASEB J; 2021 Feb; 35(2):e21196. PubMed ID: 33210360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-Culturing Human Adipose Derived Stem Cells and Schwann Cells on Spider Silk-A New Approach as Prerequisite for Enhanced Nerve Regeneration.
    Resch A; Wolf S; Mann A; Weiss T; Stetco AL; Radtke C
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue.
    Chiarini A; Freddi G; Liu D; Armato U; Dal Prà I
    Tissue Eng Part A; 2016 Aug; 22(15-16):1047-60. PubMed ID: 27411949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invited review current progress and limitations of spider silk for biomedical applications.
    Widhe M; Johansson J; Hedhammar M; Rising A
    Biopolymers; 2012 Jun; 97(6):468-78. PubMed ID: 21898363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components.
    Vidal SEL; Tamamoto KA; Nguyen H; Abbott RD; Cairns DM; Kaplan DL
    Biomaterials; 2019 Apr; 198():194-203. PubMed ID: 29709325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.
    Nayak S; Dey S; Kundu SC
    PLoS One; 2013; 8(9):e74779. PubMed ID: 24058626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.
    Agnarsson I; Kuntner M; Blackledge TA
    PLoS One; 2010 Sep; 5(9):e11234. PubMed ID: 20856804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.