These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21814766)

  • 1. Resonance assignments and secondary structure of a phytocystatin from Ananas comosus.
    Irene D; Chen BJ; Lo SH; Liu TH; Tzen JT; Chyan CL
    Biomol NMR Assign; 2012 Apr; 6(1):99-101. PubMed ID: 21814766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance assignments and secondary structure of a phytocystatin from Sesamum indicum.
    Hu YJ; Irene D; Lo CJ; Cai YL; Tzen TC; Lin TH; Chyan CL
    Biomol NMR Assign; 2015 Oct; 9(2):309-11. PubMed ID: 25673506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of a phytocystatin from Ananas comosus and its molecular interaction with papain.
    Irene D; Chung TY; Chen BJ; Liu TH; Li FY; Tzen JT; Wang CI; Chyan CL
    PLoS One; 2012; 7(11):e47865. PubMed ID: 23139757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical shift assignments of the canecystatin-1 from Saccharum officinarum.
    Cavini ÍA; de Oliveira-Silva R; de Almeida Marques I; Kalbitzer HR; Munte CE
    Biomol NMR Assign; 2013 Oct; 7(2):163-5. PubMed ID: 22696137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning, expression, and functional characterization of a cystatin from pineapple stem.
    Shyu DJ; Chyan CL; Tzen JT; Chou WM
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1681-9. PubMed ID: 15322351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms.
    Matagne A; Bolle L; El Mahyaoui R; Baeyens-Volant D; Azarkan M
    Phytochemistry; 2017 Jun; 138():29-51. PubMed ID: 28238440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening.
    Neuteboom LW; Matsumoto KO; Christopher DA
    Plant Physiol; 2009 Oct; 151(2):515-27. PubMed ID: 19648229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble Expression and Catalytic Properties of Codon-Optimized Recombinant Bromelain from MD2 Pineapple in Escherichia coli.
    Razali R; Budiman C; Kamaruzaman KA; Subbiah VK
    Protein J; 2021 Jun; 40(3):406-418. PubMed ID: 33713245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of recombinant bromelain of Ananas comosus expressed in a prokaryotic system.
    George S; Bhasker S; Madhav H; Nair A; Chinnamma M
    Mol Biotechnol; 2014 Feb; 56(2):166-74. PubMed ID: 23921698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray crystallography and NMR studies of domain-swapped canecystatin-1.
    Valadares NF; de Oliveira-Silva R; Cavini IA; Marques Ide A; Pereira HD; Soares-Costa A; Henrique-Silva F; Kalbitzer HR; Munte CE; Garratt RC
    FEBS J; 2013 Feb; 280(4):1028-38. PubMed ID: 23241243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative structural analysis of fruit and stem bromelain from Ananas comosus.
    Ramli ANM; Manas NHA; Hamid AAA; Hamid HA; Illias RM
    Food Chem; 2018 Nov; 266():183-191. PubMed ID: 30381175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens.
    López-García B; Hernández M; Segundo BS
    Lett Appl Microbiol; 2012 Jul; 55(1):62-7. PubMed ID: 22537505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physico-chemical and in-silico analysis of a phytocystatin purified from Brassica juncea cultivar RoAgro 5444.
    Khan S; Ahmad S; Siddiqi MI; Bano B
    Biochem Cell Biol; 2016 Dec; 94(6):584-596. PubMed ID: 27845561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory selectivity of canecystatin: a recombinant cysteine peptidase inhibitor from sugarcane.
    Oliva ML; Carmona AK; Andrade SS; Cotrin SS; Soares-Costa A; Henrique-Silva F
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1082-6. PubMed ID: 15249200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling and inhibitory activity of cowpea cystatin against bean bruchid pests.
    Aguiar JM; Franco OL; Rigden DJ; Bloch C; Monteiro AC; Flores VM; Jacinto T; Xavier-Filho J; Oliveira AE; Grossi-de-Sá MF; Fernandes KV
    Proteins; 2006 May; 63(3):662-70. PubMed ID: 16470583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary structure, sequence-specific 1H-NMR assignments and secondary structure in solution of bromelain inhibitor VI from pineapple stem.
    Hatano K; Kojima M; Tanokura M; Takahashi K
    Eur J Biochem; 1995 Sep; 232(2):335-43. PubMed ID: 7556179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain.
    Báez R; Lopes MT; Salas CE; Hernández M
    Planta Med; 2007 Oct; 73(13):1377-83. PubMed ID: 17893836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the acidic and basic limbs of a bell-shaped pH profile in the inhibitory activity of bromelain inhibitor VI.
    Hatano K; Sawano Y; Miyakawa T; Tanokura M
    Biopolymers; 2006 Mar; 81(4):309-19. PubMed ID: 16315142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional solution structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica.
    Nagata K; Kudo N; Abe K; Arai S; Tanokura M
    Biochemistry; 2000 Dec; 39(48):14753-60. PubMed ID: 11101290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases.
    Silva TL; Toffano L; Fernandes JB; das Graças Fernandes da Silva MF; de Sousa LRF; Vieira PC
    Braz J Microbiol; 2020 Sep; 51(3):1169-1175. PubMed ID: 32189177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.