These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Trackable multiplex recombineering for gene-trait mapping in E. coli. Mansell TJ; Warner JR; Gill RT Methods Mol Biol; 2013; 985():223-46. PubMed ID: 23417807 [TBL] [Abstract][Full Text] [Related]
5. ORBIT for E. coli: kilobase-scale oligonucleotide recombineering at high throughput and high efficiency. Saunders SH; Ahmed AM Nucleic Acids Res; 2024 May; 52(8):e43. PubMed ID: 38587185 [TBL] [Abstract][Full Text] [Related]
6. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Reisch CR; Prather KL Sci Rep; 2015 Oct; 5():15096. PubMed ID: 26463009 [TBL] [Abstract][Full Text] [Related]
8. Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. Bonde MT; Kosuri S; Genee HJ; Sarup-Lytzen K; Church GM; Sommer MO; Wang HH ACS Synth Biol; 2015 Jan; 4(1):17-22. PubMed ID: 24856730 [TBL] [Abstract][Full Text] [Related]
9. A functional recT gene for recombineering of Clostridium. Dong H; Tao W; Gong F; Li Y; Zhang Y J Biotechnol; 2014 Mar; 173():65-7. PubMed ID: 24384234 [TBL] [Abstract][Full Text] [Related]
10. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. Mosberg JA; Gregg CJ; Lajoie MJ; Wang HH; Church GM PLoS One; 2012; 7(9):e44638. PubMed ID: 22957093 [TBL] [Abstract][Full Text] [Related]
11. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering. Ryu YS; Biswas RK; Shin K; Parisutham V; Kim SM; Lee SK PLoS One; 2014; 9(4):e94266. PubMed ID: 24747264 [TBL] [Abstract][Full Text] [Related]
15. Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. Diner EJ; Hayes CS J Mol Biol; 2009 Feb; 386(2):300-15. PubMed ID: 19150357 [TBL] [Abstract][Full Text] [Related]
16. In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides. Oppenheim AB; Rattray AJ; Bubunenko M; Thomason LC; Court DL Virology; 2004 Feb; 319(2):185-9. PubMed ID: 14980479 [TBL] [Abstract][Full Text] [Related]
17. Deletion of FRT-sites by no-SCAR recombineering in Rangarajan AA; Yilmaz C; Schnetz K Microbiology (Reading); 2022 Apr; 168(4):. PubMed ID: 35411846 [TBL] [Abstract][Full Text] [Related]
18. Duplication-Insertion Recombineering: a fast and scar-free method for efficient transfer of multiple mutations in bacteria. Näsvall J; Knöppel A; Andersson DI Nucleic Acids Res; 2017 Mar; 45(5):e33. PubMed ID: 27899661 [TBL] [Abstract][Full Text] [Related]
19. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Lennen RM; Nilsson Wallin AI; Pedersen M; Bonde M; Luo H; Herrgård MJ; Sommer MO Nucleic Acids Res; 2016 Feb; 44(4):e36. PubMed ID: 26496947 [TBL] [Abstract][Full Text] [Related]
20. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Gallagher RR; Li Z; Lewis AO; Isaacs FJ Nat Protoc; 2014 Oct; 9(10):2301-16. PubMed ID: 25188632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]