These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 21815482)
1. [Possible application of pharmacogenomics to warfarin therapy]. Murata M Rinsho Byori; 2011 Jun; 59(6):594-7. PubMed ID: 21815482 [TBL] [Abstract][Full Text] [Related]
2. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Kimura R; Miyashita K; Kokubo Y; Akaiwa Y; Otsubo R; Nagatsuka K; Otsuki T; Okayama A; Minematsu K; Naritomi H; Honda S; Tomoike H; Miyata T Thromb Res; 2007; 120(2):181-6. PubMed ID: 17049586 [TBL] [Abstract][Full Text] [Related]
3. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. Carlquist JF; Horne BD; Muhlestein JB; Lappé DL; Whiting BM; Kolek MJ; Clarke JL; James BC; Anderson JL J Thromb Thrombolysis; 2006 Dec; 22(3):191-7. PubMed ID: 17111199 [TBL] [Abstract][Full Text] [Related]
4. Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Aquilante CL; Langaee TY; Lopez LM; Yarandi HN; Tromberg JS; Mohuczy D; Gaston KL; Waddell CD; Chirico MJ; Johnson JA Clin Pharmacol Ther; 2006 Apr; 79(4):291-302. PubMed ID: 16580898 [TBL] [Abstract][Full Text] [Related]
5. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Herman D; Peternel P; Stegnar M; Breskvar K; Dolzan V Thromb Haemost; 2006 May; 95(5):782-7. PubMed ID: 16676068 [TBL] [Abstract][Full Text] [Related]
6. Clinical relevance of VKORC1 (G-1639A and C1173T) and CYP2C9*3 among patients on warfarin. Teh LK; Langmia IM; Fazleen Haslinda MH; Ngow HA; Roziah MJ; Harun R; Zakaria ZA; Salleh MZ J Clin Pharm Ther; 2012 Apr; 37(2):232-6. PubMed ID: 21507031 [TBL] [Abstract][Full Text] [Related]
7. Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients. Ohno M; Yamamoto A; Ono A; Miura G; Funamoto M; Takemoto Y; Otsu K; Kouno Y; Tanabe T; Masunaga Y; Nonen S; Fujio Y; Azuma J Eur J Clin Pharmacol; 2009 Nov; 65(11):1097-103. PubMed ID: 19582440 [TBL] [Abstract][Full Text] [Related]
8. Development and comparison of a warfarin-dosing algorithm for Korean patients with atrial fibrillation. Cho HJ; On YK; Bang OY; Kim JW; Huh W; Ko JW; Kim JS; Lee SY Clin Ther; 2011 Oct; 33(10):1371-80. PubMed ID: 21981797 [TBL] [Abstract][Full Text] [Related]
9. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Wu AH; Wang P; Smith A; Haller C; Drake K; Linder M; Valdes R Pharmacogenomics; 2008 Feb; 9(2):169-78. PubMed ID: 18370846 [TBL] [Abstract][Full Text] [Related]
10. Genetic and clinical determinants influencing warfarin dosing in children with heart disease. Nguyen N; Anley P; Yu MY; Zhang G; Thompson AA; Jennings LJ Pediatr Cardiol; 2013 Apr; 34(4):984-90. PubMed ID: 23183958 [TBL] [Abstract][Full Text] [Related]
11. [Impact of five genetic polymorphisms on inter-individual variation in warfarin maintenance dose]. Huang SW; Xiang DK; Wu HL; Chen BL; An BQ; Li GF Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2011 Dec; 28(6):661-5. PubMed ID: 22161100 [TBL] [Abstract][Full Text] [Related]
12. Pharmacogenetic impact of VKORC1 and CYP2C9 allelic variants on warfarin dose requirements in a hispanic population isolate. Palacio L; Falla D; Tobon I; Mejia F; Lewis JE; Martinez AF; Arcos-Burgos M; Camargo M Clin Appl Thromb Hemost; 2010 Feb; 16(1):83-90. PubMed ID: 19567378 [TBL] [Abstract][Full Text] [Related]
13. Pharmacogenetics of target genes across the warfarin pharmacological pathway. Lal S; Jada SR; Xiang X; Lim WT; Lee EJ; Chowbay B Clin Pharmacokinet; 2006; 45(12):1189-200. PubMed ID: 17112295 [TBL] [Abstract][Full Text] [Related]
14. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Johnson JA; Gong L; Whirl-Carrillo M; Gage BF; Scott SA; Stein CM; Anderson JL; Kimmel SE; Lee MT; Pirmohamed M; Wadelius M; Klein TE; Altman RB; Clin Pharmacol Ther; 2011 Oct; 90(4):625-9. PubMed ID: 21900891 [TBL] [Abstract][Full Text] [Related]
15. Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Vecsler M; Loebstein R; Almog S; Kurnik D; Goldman B; Halkin H; Gak E Thromb Haemost; 2006 Feb; 95(2):205-11. PubMed ID: 16493479 [TBL] [Abstract][Full Text] [Related]
16. Pharmacogenetics of oral anticoagulants: a basis for dose individualization. Stehle S; Kirchheiner J; Lazar A; Fuhr U Clin Pharmacokinet; 2008; 47(9):565-94. PubMed ID: 18698879 [TBL] [Abstract][Full Text] [Related]
18. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Loebstein R; Vecsler M; Kurnik D; Austerweil N; Gak E; Halkin H; Almog S Clin Pharmacol Ther; 2005 May; 77(5):365-72. PubMed ID: 15900282 [TBL] [Abstract][Full Text] [Related]
19. Effect of CYP2C9 and VKORC1 genotypes on early-phase and steady-state warfarin dosing in Korean patients with mechanical heart valve replacement. Kim HS; Lee SS; Oh M; Jang YJ; Kim EY; Han IY; Cho KH; Shin JG Pharmacogenet Genomics; 2009 Feb; 19(2):103-12. PubMed ID: 19077919 [TBL] [Abstract][Full Text] [Related]
20. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Tham LS; Goh BC; Nafziger A; Guo JY; Wang LZ; Soong R; Lee SC Clin Pharmacol Ther; 2006 Oct; 80(4):346-55. PubMed ID: 17015052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]