These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21815656)

  • 1. Dynamic changes of acoustic load and complex impedance as reporters for the cytotoxicity of small molecule inhibitors.
    Tarantola M; Sunnick E; Schneider D; Marel AK; Kunze A; Janshoff A
    Chem Res Toxicol; 2011 Sep; 24(9):1494-506. PubMed ID: 21815656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D.
    Tymchenko N; Nilebäck E; Voinova MV; Gold J; Kasemo B; Svedhem S
    Biointerphases; 2012 Dec; 7(1-4):43. PubMed ID: 22791360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects.
    Marx KA; Zhou T; Montrone A; McIntosh D; Braunhut SJ
    Anal Biochem; 2007 Feb; 361(1):77-92. PubMed ID: 17161375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance.
    Jaruwongrungsee K; Waiwijit U; Wisitsoraat A; Sangworasil M; Pintavirooj C; Tuantranont A
    Biosens Bioelectron; 2015 May; 67():576-81. PubMed ID: 25307623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quartz Crystal Microbalance as Cell-Based Biosensor to Detect and Study Cytoskeletal Alterations and Dynamics.
    Bianco M; Vergara D; De Domenico S; Maffia M; Gaballo A; Arima V
    Biotechnol J; 2018 Nov; 13(11):e1700699. PubMed ID: 29663725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling.
    Michaelis S; Wegener J; Robelek R
    Biosens Bioelectron; 2013 Nov; 49():63-70. PubMed ID: 23711901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells.
    Tarantola M; Pietuch A; Schneider D; Rother J; Sunnick E; Rosman C; Pierrat S; Sönnichsen C; Wegener J; Janshoff A
    Nanotoxicology; 2011 Jun; 5(2):254-68. PubMed ID: 21050076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis.
    Tarantola M; Marel AK; Sunnick E; Adam H; Wegener J; Janshoff A
    Integr Biol (Camb); 2010 Mar; 2(2-3):139-50. PubMed ID: 20473392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond.
    Chen JY; Penn LS; Xi J
    Biosens Bioelectron; 2018 Jan; 99():593-602. PubMed ID: 28830033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic detection of cell adhesion to a coated quartz crystal microbalance - implications for studying the biocompatibility of polymers.
    Da-Silva AC; Soares SS; Ferreira GN
    Biotechnol J; 2013 Jun; 8(6):690-8. PubMed ID: 23447442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell motility probed by noise analysis of thickness shear mode resonators.
    Sapper A; Wegener J; Janshoff A
    Anal Chem; 2006 Jul; 78(14):5184-91. PubMed ID: 16841946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time QCM-D monitoring of cellular responses to different cytomorphic agents.
    Fatisson J; Azari F; Tufenkji N
    Biosens Bioelectron; 2011 Mar; 26(7):3207-12. PubMed ID: 21237634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioelectronics of The Cellular Cytoskeleton: Monitoring Cytoskeletal Conductance Variation for Sensing Drug Resistance.
    Gharooni M; Alikhani A; Moghtaderi H; Abiri H; Mashaghi A; Abbasvandi F; Khayamian MA; Miripour ZS; Zandi A; Abdolahad M
    ACS Sens; 2019 Feb; 4(2):353-362. PubMed ID: 30572702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic quantification of ATP using a quartz crystal microbalance with dissipation.
    Özalp VC
    Analyst; 2011 Dec; 136(23):5046-50. PubMed ID: 22005829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities.
    Liu F; Li F; Nordin AN; Voiculescu I
    Sensors (Basel); 2013 Mar; 13(3):3039-55. PubMed ID: 23459387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance.
    Ferreira GN; da-Silva AC; Tomé B
    Trends Biotechnol; 2009 Dec; 27(12):689-97. PubMed ID: 19853941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS).
    Xiao C; Luong JH
    Biotechnol Prog; 2003; 19(3):1000-5. PubMed ID: 12790667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces.
    Wegener J; Keese CR; Giaever I
    Exp Cell Res; 2000 Aug; 259(1):158-66. PubMed ID: 10942588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ.
    Wegener J; Janshoff A; Steinem C
    Cell Biochem Biophys; 2001; 34(1):121-51. PubMed ID: 11394439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.