BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1068 related articles for article (PubMed ID: 21815695)

  • 1. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers.
    Fazeli M; Keley M; Biazar E
    Int J Biol Macromol; 2018 Sep; 116():272-280. PubMed ID: 29729338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films.
    Khan A; Khan RA; Salmieri S; Le Tien C; Riedl B; Bouchard J; Chauve G; Tan V; Kamal MR; Lacroix M
    Carbohydr Polym; 2012 Nov; 90(4):1601-8. PubMed ID: 22944422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers.
    Zhou C; Wu Q
    Colloids Surf B Biointerfaces; 2011 May; 84(1):155-62. PubMed ID: 21273050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers.
    Babaee M; Jonoobi M; Hamzeh Y; Ashori A
    Carbohydr Polym; 2015 Nov; 132():1-8. PubMed ID: 26256317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties.
    Naidu DS; John MJ
    Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films.
    Savadekar NR; Mhaske ST
    Carbohydr Polym; 2012 Jun; 89(1):146-51. PubMed ID: 24750616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments.
    Tibolla H; Czaikoski A; Pelissari FM; Menegalli FC; Cunha RL
    Int J Biol Macromol; 2020 Oct; 161():132-146. PubMed ID: 32522543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities.
    Bao Y; Zhang H; Luan Q; Zheng M; Tang H; Huang F
    Carbohydr Polym; 2018 Mar; 184():66-73. PubMed ID: 29352944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological and structural characterisation of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types.
    Ghasemlou M; Khodaiyan F; Oromiehie A
    Int J Biol Macromol; 2011 Nov; 49(4):814-21. PubMed ID: 21827782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.
    Tsang M; Chun YW; Im YM; Khang D; Webster TJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-chain anhydride modification: a new strategy for preparing xylan films.
    Zhong LX; Peng XW; Yang D; Cao XF; Sun RC
    J Agric Food Chem; 2013 Jan; 61(3):655-61. PubMed ID: 23268718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell cellulose nanofibers for biocomposites - nanostructural effects in hydrated state.
    Prakobna K; Terenzi C; Zhou Q; Furó I; Berglund LA
    Carbohydr Polym; 2015 Jul; 125():92-102. PubMed ID: 25857964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers.
    Prakobna K; Galland S; Berglund LA
    Biomacromolecules; 2015 Mar; 16(3):904-12. PubMed ID: 25650787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of cellulose nanofibers (CNF) ramie reinforced cassava starch hybrid composites.
    Syafri E; Kasim A; Abral H; Sudirman ; Sulungbudi GT; Sanjay MR; Sari NH
    Int J Biol Macromol; 2018 Dec; 120(Pt A):578-586. PubMed ID: 30165147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.