BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 21815802)

  • 1. Increasing the pore size of electrospun scaffolds.
    Rnjak-Kovacina J; Weiss AS
    Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review.
    Zhong S; Zhang Y; Lim CT
    Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds.
    Li L; Qian Y; Jiang C; Lv Y; Liu W; Zhong L; Cai K; Li S; Yang L
    Biomaterials; 2012 Apr; 33(12):3428-45. PubMed ID: 22300743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density.
    Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A
    J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering.
    Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS
    Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures.
    Leong MF; Chan WY; Chian KS
    Nanomedicine (Lond); 2013 Apr; 8(4):555-66. PubMed ID: 23560407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration.
    Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK
    Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning: applications in drug delivery and tissue engineering.
    Sill TJ; von Recum HA
    Biomaterials; 2008 May; 29(13):1989-2006. PubMed ID: 18281090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering.
    Ingavle GC; Leach JK
    Tissue Eng Part B Rev; 2014 Aug; 20(4):277-93. PubMed ID: 24004443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold.
    Cheng K; Kisaalita WS
    Biotechnol Prog; 2010; 26(3):838-46. PubMed ID: 20196160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells.
    Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG
    Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun cellular microenvironments: Understanding controlled release and scaffold structure.
    Szentivanyi A; Chakradeo T; Zernetsch H; Glasmacher B
    Adv Drug Deliv Rev; 2011 Apr; 63(4-5):209-20. PubMed ID: 21145932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth.
    Jones AC; Arns CH; Hutmacher DW; Milthorpe BK; Sheppard AP; Knackstedt MA
    Biomaterials; 2009 Mar; 30(7):1440-51. PubMed ID: 19091398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering.
    Zhu X; Cui W; Li X; Jin Y
    Biomacromolecules; 2008 Jul; 9(7):1795-801. PubMed ID: 18578495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration.
    Wang K; Xu M; Zhu M; Su H; Wang H; Kong D; Wang L
    J Biomed Mater Res A; 2013 Dec; 101(12):3474-81. PubMed ID: 23606405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique.
    Shabani I; Haddadi-Asl V; Seyedjafari E; Soleimani M
    Biochem Biophys Res Commun; 2012 Jun; 423(1):50-4. PubMed ID: 22618233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroporosity enhances vascularization of electrospun scaffolds.
    Joshi VS; Lei NY; Walthers CM; Wu B; Dunn JC
    J Surg Res; 2013 Jul; 183(1):18-26. PubMed ID: 23769018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.