BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21816155)

  • 1. Intracellular Energetic Units regulate metabolism in cardiac cells.
    Saks V; Kuznetsov AV; Gonzalez-Granillo M; Tepp K; Timohhina N; Karu-Varikmaa M; Kaambre T; Dos Santos P; Boucher F; Guzun R
    J Mol Cell Cardiol; 2012 Feb; 52(2):419-36. PubMed ID: 21816155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the role of tubulin beta II isotype in regulation of mitochondrial respiration in intracellular energetic units in cardiac cells.
    Gonzalez-Granillo M; Grichine A; Guzun R; Usson Y; Tepp K; Chekulayev V; Shevchuk I; Karu-Varikmaa M; Kuznetsov AV; Grimm M; Saks V; Kaambre T
    J Mol Cell Cardiol; 2012 Feb; 52(2):437-47. PubMed ID: 21846472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome.
    Saks V; Guzun R; Timohhina N; Tepp K; Varikmaa M; Monge C; Beraud N; Kaambre T; Kuznetsov A; Kadaja L; Eimre M; Seppet E
    Biochim Biophys Acta; 2010; 1797(6-7):678-97. PubMed ID: 20096261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High efficiency of energy flux controls within mitochondrial interactosome in cardiac intracellular energetic units.
    Tepp K; Shevchuk I; Chekulayev V; Timohhina N; Kuznetsov AV; Guzun R; Saks V; Kaambre T
    Biochim Biophys Acta; 2011 Dec; 1807(12):1549-61. PubMed ID: 21872567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function.
    Guzun R; Timohhina N; Tepp K; Gonzalez-Granillo M; Shevchuk I; Chekulayev V; Kuznetsov AV; Kaambre T; Saks VA
    Amino Acids; 2011 May; 40(5):1333-48. PubMed ID: 21390528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes - experimental study.
    Tepp K; Timohhina N; Chekulayev V; Shevchuk I; Kaambre T; Saks V
    Acta Biochim Pol; 2010; 57(4):421-30. PubMed ID: 21170421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation.
    Guzun R; Kaambre T; Bagur R; Grichine A; Usson Y; Varikmaa M; Anmann T; Tepp K; Timohhina N; Shevchuk I; Chekulayev V; Boucher F; Dos Santos P; Schlattner U; Wallimann T; Kuznetsov AV; Dzeja P; Aliev M; Saks V
    Acta Physiol (Oxf); 2015 Jan; 213(1):84-106. PubMed ID: 24666671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo.
    Guzun R; Saks V
    Int J Mol Sci; 2010 Mar; 11(3):982-1019. PubMed ID: 20479996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria-cytoskeleton interaction: distribution of β-tubulins in cardiomyocytes and HL-1 cells.
    Guzun R; Karu-Varikmaa M; Gonzalez-Granillo M; Kuznetsov AV; Michel L; Cottet-Rousselle C; Saaremäe M; Kaambre T; Metsis M; Grimm M; Auffray C; Saks V
    Biochim Biophys Acta; 2011 Apr; 1807(4):458-69. PubMed ID: 21296049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for Mitochondrial Interactosome.
    Timohhina N; Guzun R; Tepp K; Monge C; Varikmaa M; Vija H; Sikk P; Kaambre T; Sackett D; Saks V
    J Bioenerg Biomembr; 2009 Jun; 41(3):259-75. PubMed ID: 19597977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase.
    Monge C; Beraud N; Kuznetsov AV; Rostovtseva T; Sackett D; Schlattner U; Vendelin M; Saks VA
    Mol Cell Biochem; 2008 Nov; 318(1-2):147-65. PubMed ID: 18629616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships in the regulation of energy transfer between mitochondria and ATPases in cardiac cells.
    Seppet EK; Eimre M; Anmann T; Seppet E; Piirsoo A; Peet N; Paju K; Guzun R; Beraud N; Pelloux S; Tourneur Y; Kuznetsov AV; Käämbre T; Sikk P; Saks VA
    Exp Clin Cardiol; 2006; 11(3):189-94. PubMed ID: 18651030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of cardiac ischemia/reperfusion on the mitochondria-cytoskeleton interactions.
    Bagur R; Tanguy S; Foriel S; Grichine A; Sanchez C; Pernet-Gallay K; Kaambre T; Kuznetsov AV; Usson Y; Boucher F; Guzun R
    Biochim Biophys Acta; 2016 Jun; 1862(6):1159-71. PubMed ID: 26976332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells. Importance of cell structure/organization for respiration regulation.
    Anmann T; Guzun R; Beraud N; Pelloux S; Kuznetsov AV; Kogerman L; Kaambre T; Sikk P; Paju K; Peet N; Seppet E; Ojeda C; Tourneur Y; Saks V
    Biochim Biophys Acta; 2006 Dec; 1757(12):1597-606. PubMed ID: 17084805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis.
    Saks VA; Khuchua ZA; Vasilyeva EV; Belikova OYu ; Kuznetsov AV
    Mol Cell Biochem; 1994; 133-134():155-92. PubMed ID: 7808453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart.
    Anmann T; Varikmaa M; Timohhina N; Tepp K; Shevchuk I; Chekulayev V; Saks V; Kaambre T
    Biochim Biophys Acta; 2014 Aug; 1837(8):1350-61. PubMed ID: 24704335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome.
    Guzun R; Gonzalez-Granillo M; Karu-Varikmaa M; Grichine A; Usson Y; Kaambre T; Guerrero-Roesch K; Kuznetsov A; Schlattner U; Saks V
    Biochim Biophys Acta; 2012 Jun; 1818(6):1545-54. PubMed ID: 22244843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties.
    Guzun R; Timohhina N; Tepp K; Monge C; Kaambre T; Sikk P; Kuznetsov AV; Pison C; Saks V
    Biochim Biophys Acta; 2009 Sep; 1787(9):1089-105. PubMed ID: 19362066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.