BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21816401)

  • 1. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode.
    Svec F
    J Chromatogr A; 2012 Mar; 1228():250-62. PubMed ID: 21816401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the development of organic polymer monolithic columns and their applications in food analysis--a review.
    Jandera P
    J Chromatogr A; 2013 Oct; 1313():37-53. PubMed ID: 24034978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous monoliths: stationary phases of choice for high performance liquid chromatography in various formats.
    Svec F
    Se Pu; 2005 Nov; 23(6):585-94. PubMed ID: 16498986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolithic columns in high-performance liquid chromatography.
    Guiochon G
    J Chromatogr A; 2007 Oct; 1168(1-2):101-68; discussion 100. PubMed ID: 17640660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic polymer monoliths as stationary phases for capillary HPLC.
    Svec F
    J Sep Sci; 2004 Dec; 27(17-18):1419-30. PubMed ID: 15638150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypercrosslinking: new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules.
    Urban J; Svec F; Fréchet JM
    J Chromatogr A; 2010 Dec; 1217(52):8212-21. PubMed ID: 21092973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography.
    Rathnasekara R; Khadka S; Jonnada M; El Rassi Z
    Electrophoresis; 2017 Jan; 38(1):60-79. PubMed ID: 27731511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical-mediated step-growth: Preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics.
    Alves F; Nischang I
    J Chromatogr A; 2015 Sep; 1412():112-25. PubMed ID: 26303255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring-opening metathesis polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Downscaling and application in medical research.
    Sinner FM; Gatschelhofer C; Mautner A; Magnes C; Buchmeiser MR; Pieber TR
    J Chromatogr A; 2008 May; 1191(1-2):274-81. PubMed ID: 18242625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography.
    Ma S; Zhang H; Li Y; Li Y; Zhang N; Ou J; Ye M; Wei Y
    J Chromatogr A; 2018 Feb; 1538():8-16. PubMed ID: 29395162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.
    Nischang I; Teasdale I; Brüggemann O
    J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of 400μm I.D. polymer-based hydrophilic interaction chromatography monolithic columns with high column efficiency.
    Liu C; Li H; Wang Q; Crommen J; Zhou H; Jiang Z
    J Chromatogr A; 2017 Aug; 1509():83-90. PubMed ID: 28629939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of monolithic silica columns for high-performance liquid chromatography.
    Núñez O; Nakanishi K; Tanaka N
    J Chromatogr A; 2008 May; 1191(1-2):231-52. PubMed ID: 18313061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of commercial organic polymer-based and silica-based monolithic columns using mixtures of analytes differing in size and chemistry.
    Vyviurska O; Lv Y; Mann BF; Svec F
    J Sep Sci; 2018 Apr; 41(7):1558-1566. PubMed ID: 29292573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for mu-HPLC and capillary electrochromatography.
    Li Y; Chen Y; Xiang R; Ciuparu D; Pfefferle LD; Horváth C; Wilkins JA
    Anal Chem; 2005 Mar; 77(5):1398-406. PubMed ID: 15732924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC.
    Ou J; Liu Z; Wang H; Lin H; Dong J; Zou H
    Electrophoresis; 2015 Jan; 36(1):62-75. PubMed ID: 25263317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolithic bed structure for capillary liquid chromatography.
    Aggarwal P; Tolley HD; Lee ML
    J Chromatogr A; 2012 Jan; 1219():1-14. PubMed ID: 22169193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of monolithic silica columns for HPLC.
    Kobayashi H; Ikegami T; Kimura H; Hara T; Tokuda D; Tanaka N
    Anal Sci; 2006 Apr; 22(4):491-501. PubMed ID: 16760589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica-based monolithic capillary columns-Effect of preparation temperature on separation efficiency.
    Planeta J; Moravcová D; Roth M; Karásek P; Kahle V
    J Chromatogr A; 2010 Sep; 1217(36):5737-40. PubMed ID: 20674924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry.
    Urban J; Eeltink S; Jandera P; Schoenmakers PJ
    J Chromatogr A; 2008 Feb; 1182(2):161-8. PubMed ID: 18206896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.