BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21817092)

  • 1. Compositionality of rule representations in human prefrontal cortex.
    Reverberi C; Görgen K; Haynes JD
    Cereb Cortex; 2012 Jun; 22(6):1237-46. PubMed ID: 21817092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional neuroanatomy of classic delayed response tasks in humans and the limitations of cross-method convergence in prefrontal function.
    Turner GR; Levine B
    Neuroscience; 2006 Apr; 139(1):327-37. PubMed ID: 16324791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural circuits subserving the retrieval and maintenance of abstract rules.
    Bunge SA; Kahn I; Wallis JD; Miller EK; Wagner AD
    J Neurophysiol; 2003 Nov; 90(5):3419-28. PubMed ID: 12867532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontal networks for learning and executing arbitrary stimulus-response associations.
    Boettiger CA; D'Esposito M
    J Neurosci; 2005 Mar; 25(10):2723-32. PubMed ID: 15758182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An information-processing model of three cortical regions: evidence in episodic memory retrieval.
    Sohn MH; Goode A; Stenger VA; Jung KJ; Carter CS; Anderson JR
    Neuroimage; 2005 Mar; 25(1):21-33. PubMed ID: 15734340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choosing the rules: distinct and overlapping frontoparietal representations of task rules for perceptual decisions.
    Zhang J; Kriegeskorte N; Carlin JD; Rowe JB
    J Neurosci; 2013 Jul; 33(29):11852-62. PubMed ID: 23864675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection.
    Paulus MP; Feinstein JS; Tapert SF; Liu TT
    Neuroimage; 2004 Feb; 21(2):733-43. PubMed ID: 14980576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty.
    Paulus MP; Hozack N; Zauscher B; McDowell JE; Frank L; Brown GG; Braff DL
    Neuroimage; 2001 Jan; 13(1):91-100. PubMed ID: 11133312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unconscious determinants of free decisions in the human brain.
    Soon CS; Brass M; Heinze HJ; Haynes JD
    Nat Neurosci; 2008 May; 11(5):543-5. PubMed ID: 18408715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontoparietal representations of task context support the flexible control of goal-directed cognition.
    Waskom ML; Kumaran D; Gordon AM; Rissman J; Wagner AD
    J Neurosci; 2014 Aug; 34(32):10743-55. PubMed ID: 25100605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hippocampal-parietal network for learning an ordered sequence.
    Van Opstal F; Verguts T; Orban GA; Fias W
    Neuroimage; 2008 Mar; 40(1):333-41. PubMed ID: 18155926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex.
    Goodwin SJ; Blackman RK; Sakellaridi S; Chafee MV
    J Neurosci; 2012 Mar; 32(10):3499-515. PubMed ID: 22399773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The capacity constraint in the prefrontal and parietal regions for coordinating dual arithmetic tasks.
    Kuo BC; Yeh YY; Chen DY; Liang KC; Chen JH
    Brain Res; 2008 Mar; 1199():100-10. PubMed ID: 18291350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From rule to response: neuronal processes in the premotor and prefrontal cortex.
    Wallis JD; Miller EK
    J Neurophysiol; 2003 Sep; 90(3):1790-806. PubMed ID: 12736235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning.
    Durstewitz D; Vittoz NM; Floresco SB; Seamans JK
    Neuron; 2010 May; 66(3):438-48. PubMed ID: 20471356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-related and item-related neural correlates of successful memory encoding.
    Otten LJ; Henson RN; Rugg MD
    Nat Neurosci; 2002 Dec; 5(12):1339-44. PubMed ID: 12402040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.