These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21817306)

  • 1. Non-Markovian damping of Rabi oscillations in semiconductor quantum dots.
    Mogilevtsev D; Nisovtsev AP; Kilin S; Cavalcanti SB; Brandi HS; Oliveira LE
    J Phys Condens Matter; 2009 Feb; 21(5):055801. PubMed ID: 21817306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving-dependent damping of Rabi oscillations in two-level semiconductor systems.
    Mogilevtsev D; Nisovtsev AP; Kilin S; Cavalcanti SB; Brandi HS; Oliveira LE
    Phys Rev Lett; 2008 Jan; 100(1):017401. PubMed ID: 18232819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots.
    Förstner J; Weber C; Danckwerts J; Knorr A
    Phys Rev Lett; 2003 Sep; 91(12):127401. PubMed ID: 14525398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonmonotonic field dependence of damping and reappearance of Rabi oscillations in quantum dots.
    Vagov A; Croitoru MD; Axt VM; Kuhn T; Peeters FM
    Phys Rev Lett; 2007 Jun; 98(22):227403. PubMed ID: 17677878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent manipulation of coupled electron spins in semiconductor quantum dots.
    Petta JR; Johnson AC; Taylor JM; Laird EA; Yacoby A; Lukin MD; Marcus CM; Hanson MP; Gossard AC
    Science; 2005 Sep; 309(5744):2180-4. PubMed ID: 16141370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots.
    Ramsay AJ; Gopal AV; Gauger EM; Nazir A; Lovett BW; Fox AM; Skolnick MS
    Phys Rev Lett; 2010 Jan; 104(1):017402. PubMed ID: 20366392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dephasing induced by non-Markovian random telegraph noise.
    Cai X
    Sci Rep; 2020 Jan; 10(1):88. PubMed ID: 31919455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soliton nanoantennas in two-dimensional arrays of quantum dots.
    Gligorić G; Maluckov A; Hadžievski Lj; Slepyan GY; Malomed BA
    J Phys Condens Matter; 2015 Jun; 27(22):225301. PubMed ID: 25985396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation-induced dephasing in a resonantly driven InAs/GaAs quantum dot.
    Monniello L; Tonin C; Hostein R; Lemaitre A; Martinez A; Voliotis V; Grousson R
    Phys Rev Lett; 2013 Jul; 111(2):026403. PubMed ID: 23889424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driven coherent oscillations of a single electron spin in a quantum dot.
    Koppens FH; Buizert C; Tielrooij KJ; Vink IT; Nowack KC; Meunier T; Kouwenhoven LP; Vandersypen LM
    Nature; 2006 Aug; 442(7104):766-71. PubMed ID: 16915280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent manipulation of semiconductor quantum bits with terahertz radiation.
    Cole BE; Williams JB; King BT; Sherwin MS; Stanley CR
    Nature; 2001 Mar; 410(6824):60-3. PubMed ID: 11242038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-time correlation in non-Markovian dephasing of an exciton-phonon system in InAs quantum dots.
    Tahara H; Ogawa Y; Minami F; Akahane K; Sasaki M
    Phys Rev Lett; 2014 Apr; 112(14):147404. PubMed ID: 24766013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system.
    Kaer P; Nielsen TR; Lodahl P; Jauho AP; Mørk J
    Phys Rev Lett; 2010 Apr; 104(15):157401. PubMed ID: 20482014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An all-optical quantum gate in a semiconductor quantum dot.
    Li X; Wu Y; Steel D; Gammon D; Stievater TH; Katzer DS; Park D; Piermarocchi C; Sham LJ
    Science; 2003 Aug; 301(5634):809-11. PubMed ID: 12907794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.
    Yoshino S; Oohata G; Mizoguchi K
    Phys Rev Lett; 2015 Oct; 115(15):157402. PubMed ID: 26550752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent properties of a two-level system based on a quantum-dot photodiode.
    Zrenner A; Beham E; Stufler S; Findeis F; Bichler M; Abstreiter G
    Nature; 2002 Aug; 418(6898):612-4. PubMed ID: 12167853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal effects on photon-induced quantum transport in a single quantum dot.
    Assunção MO; de Oliveira EJ; Villas-Bôas JM; Souza FM
    J Phys Condens Matter; 2013 Apr; 25(13):135301. PubMed ID: 23462318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Dependent Dephasing and Quantum Transport.
    Moreira SV; Marques B; Semião FL
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalization and sideband linewidth insensitivity.
    Wei YJ; He Y; He YM; Lu CY; Pan JW; Schneider C; Kamp M; Höfling S; McCutcheon DP; Nazir A
    Phys Rev Lett; 2014 Aug; 113(9):097401. PubMed ID: 25216004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.