These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Zhao H; Mazumdar S Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940 [TBL] [Abstract][Full Text] [Related]
4. The optical resonances in carbon nanotubes arise from excitons. Wang F; Dukovic G; Brus LE; Heinz TF Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212 [TBL] [Abstract][Full Text] [Related]
5. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212 [TBL] [Abstract][Full Text] [Related]
9. Exciton states and optical properties of carbon nanotubes. Ajiki H J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202 [TBL] [Abstract][Full Text] [Related]
10. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions. Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635 [TBL] [Abstract][Full Text] [Related]
11. Intensity-dependent exciton dynamics of (6,5) single-walled carbon nanotubes: momentum selection rules, diffusion, and nonlinear interactions. Harrah DM; Schneck JR; Green AA; Hersam MC; Ziegler LD; Swan AK ACS Nano; 2011 Dec; 5(12):9898-906. PubMed ID: 22077149 [TBL] [Abstract][Full Text] [Related]
12. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic characteristics of differently produced single-walled carbon nanotubes. Li Z; Zheng L; Yan W; Pan Z; Wei S Chemphyschem; 2009 Sep; 10(13):2296-304. PubMed ID: 19569089 [TBL] [Abstract][Full Text] [Related]
14. Observation of excitons in one-dimensional metallic single-walled carbon nanotubes. Wang F; Cho DJ; Kessler B; Deslippe J; Schuck PJ; Louie SG; Zettl A; Heinz TF; Shen YR Phys Rev Lett; 2007 Nov; 99(22):227401. PubMed ID: 18233325 [TBL] [Abstract][Full Text] [Related]
15. On the origin of preferential growth of semiconducting single-walled carbon nanotubes. Li Y; Peng S; Mann D; Cao J; Tu R; Cho KJ; Dai H J Phys Chem B; 2005 Apr; 109(15):6968-71. PubMed ID: 16851791 [TBL] [Abstract][Full Text] [Related]
16. Observation of exciton-phonon sideband in individual metallic single-walled carbon nanotubes. Zeng H; Zhao H; Zhang FC; Cui X Phys Rev Lett; 2009 Apr; 102(13):136406. PubMed ID: 19392381 [TBL] [Abstract][Full Text] [Related]
17. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study. Manna AK; Pati SK Nanoscale; 2010 Jul; 2(7):1190-5. PubMed ID: 20648348 [TBL] [Abstract][Full Text] [Related]
18. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations. Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812 [TBL] [Abstract][Full Text] [Related]