These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21817444)

  • 1. Magnetic particle hyperthermia: Néel relaxation in magnetic nanoparticles under circularly polarized field.
    de Châtel PF; Nándori I; Hakl J; Mészáros S; Vad K
    J Phys Condens Matter; 2009 Mar; 21(12):124202. PubMed ID: 21817444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic particle hyperthermia: power losses under circularly polarized field in anisotropic nanoparticles.
    Nándori I; Rácz J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061404. PubMed ID: 23367947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles.
    Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F
    J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia.
    Hergt R; Dutz S; Röder M
    J Phys Condens Matter; 2008 Sep; 20(38):385214. PubMed ID: 21693832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching properties of ferromagnetic nanoparticles driven by a circularly polarized magnetic field.
    Lyutyy TV; Polyakov AY; Rot-Serov AV; Binns C
    J Phys Condens Matter; 2009 Sep; 21(39):396002. PubMed ID: 21832400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-jump model for the combined Brownian and Néel relaxation dynamics of ferrofluids in the presence of external fields and flow.
    Ilg P
    Phys Rev E; 2019 Aug; 100(2-1):022608. PubMed ID: 31574757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast magnetization reversal of a magnetic nanoparticle induced by cosine chirp microwave field pulse.
    Islam MT; Akanda MAS; Pikul MAJ; Wang X
    J Phys Condens Matter; 2021 Dec; 34(10):. PubMed ID: 34874303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles.
    Osaci M; Cacciola M
    Beilstein J Nanotechnol; 2015; 6():2173-82. PubMed ID: 26665090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferromagnetic resonance in ϵ-Co magnetic composites.
    Chalapat K; Timonen JV; Huuppola M; Koponen L; Johans C; Ras RH; Ikkala O; Oksanen MA; Seppälä E; Paraoanu GS
    Nanotechnology; 2014 Dec; 25(48):485707. PubMed ID: 25397945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles.
    Rácz J; de Châtel PF; Szabó IA; Szunyogh L; Nándori I
    Phys Rev E; 2016 Jan; 93(1):012607. PubMed ID: 26871122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient heat-dissipation power driven by ferromagnetic resonance in MFe
    Lee JH; Kim Y; Kim SK
    Sci Rep; 2022 Mar; 12(1):5232. PubMed ID: 35347192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Externally driven transmission and collisions of domain walls in ferromagnetic wires.
    Janutka A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056607. PubMed ID: 21728682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and energy dissipation of a rigid dipole driven by the RF-field in a viscous fluid: Deterministic approach.
    Lyutyy TV
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):142. PubMed ID: 30552543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells.
    Soukup D; Moise S; Céspedes E; Dobson J; Telling ND
    ACS Nano; 2015 Jan; 9(1):231-40. PubMed ID: 25562356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of induced currents in a rat exposed to 50 Hz linearly and circularly polarized magnetic fields.
    Wake K; Tanaka T; Taki M
    Bioelectromagnetics; 2000 Jul; 21(5):354-63. PubMed ID: 10899771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical limit in the magnetization reversal of stoner particles.
    Wang XR; Sun ZZ
    Phys Rev Lett; 2007 Feb; 98(7):077201. PubMed ID: 17359053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.