These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21817519)

  • 1. Ordered fullerene nanocylinders in large-diameter carbon nanotubes.
    Yamazaki T; Kuramochi K; Takagi D; Homma Y; Nishimura F; Hori N; Watanabe K; Suzuki S; Kobayashi Y
    Nanotechnology; 2008 Jan; 19(4):045702. PubMed ID: 21817519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal/electron irradiation assisted coalescence of Sc3N@C80 fullerene in carbon nanotube and evidence of charge transfer between pristine/coalesced fullerenes and nanotubes.
    Fallah A; Yonetani Y; Senga R; Hirahara K; Kitaura R; Shinohara H; Nakayama Y
    Nanoscale; 2013 Dec; 5(23):11755-60. PubMed ID: 24121541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy of fullerenes and fullerene-nanotube composites.
    Kuzmany H; Pfeiffer R; Hulman M; Kramberger C
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2375-406. PubMed ID: 15482984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering molecular chains in carbon nanotubes.
    Chamberlain TW; Pfeiffer R; Howells J; Peterlik H; Kuzmany H; Kräutler B; Da Ros T; Melle-Franco M; Zerbetto F; Milić D; Khlobystov AN
    Nanoscale; 2012 Dec; 4(23):7540-8. PubMed ID: 23104233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes.
    Vizuete M; Barrejón M; Gómez-Escalonilla MJ; Langa F
    Nanoscale; 2012 Aug; 4(15):4370-81. PubMed ID: 22706450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant laser-induced formation of double-walled carbon nanotubes from peapods under ambient conditions.
    Berd M; Puech P; Righi A; Benfdila A; Monthioux M
    Small; 2012 Jul; 8(13):2045-52. PubMed ID: 22508660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating.
    Wu WT; Chen KH; Hsu CM
    Nanotechnology; 2006 Sep; 17(18):4542-7. PubMed ID: 21727575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled double ladder structure formed inside carbon nanotubes by encapsulation of H8Si8O12.
    Liu Z; Joung SK; Okazaki T; Suenaga K; Hagiwara Y; Ohsuna T; Kuroda K; Iijima S
    ACS Nano; 2009 May; 3(5):1160-6. PubMed ID: 19408925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes.
    Yumura T; Kertesz M; Iijima S
    J Phys Chem B; 2007 Feb; 111(5):1099-109. PubMed ID: 17266263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes.
    Almaqwashi AA; Kevek JW; Burton RM; DeBorde T; Minot ED
    Nanotechnology; 2011 Jul; 22(27):275717. PubMed ID: 21613731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the physical parameters for continuous synthesis of fullerene peapods.
    Tiwari N; Pandey N; Roy D; Mukhopadhyay K; Eswara Prasad N
    Nanotechnology; 2016 May; 27(20):205604. PubMed ID: 27070531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing the motion of molecular nanomaterials encapsulated within carbon nanotubes with ultrahigh temporal resolution.
    Warner JH; Ito Y; Rümmeli MH; Büchner B; Shinohara H; Briggs GA
    ACS Nano; 2009 Oct; 3(10):3037-44. PubMed ID: 19743832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water.
    Nakashima N; Tanaka Y; Tomonari Y; Murakami H; Kataura H; Sakaue T; Yoshikawa K
    J Phys Chem B; 2005 Jul; 109(27):13076-82. PubMed ID: 16852626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2015 Mar; 17(11):7303-16. PubMed ID: 25698066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of fullerene-decorated carbon nanotubes and their application in flame-retarding polypropylene.
    Song P; Shen Y; Du B; Guo Z; Fang Z
    Nanoscale; 2009 Oct; 1(1):118-21. PubMed ID: 20644869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computations of model narrow nanotubes closed by fragments of smaller fullerenes and quasi-fullerenes.
    Slanina Z; Uhlík F; Adamowicz L
    J Mol Graph Model; 2003 Jun; 21(6):517-22. PubMed ID: 12676238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.