BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21817521)

  • 1. Stability analysis of optofluidic transport on solid-core waveguiding structures.
    Yang AH; Erickson D
    Nanotechnology; 2008 Jan; 19(4):045704. PubMed ID: 21817521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic ring resonator switch for optical particle transport.
    Yang AH; Erickson D
    Lab Chip; 2010 Mar; 10(6):769-74. PubMed ID: 20221566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forces and transport velocities for a particle in a slot waveguide.
    Yang AH; Lerdsuchatawanich T; Erickson D
    Nano Lett; 2009 Mar; 9(3):1182-8. PubMed ID: 19178156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force acting on a dielectric particle in a concentration gradient by ionic concentration polarization under an externally applied DC electric field.
    Kang KH; Li D
    J Colloid Interface Sci; 2005 Jun; 286(2):792-806. PubMed ID: 15897097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic trapping and transport on solid core waveguides within a microfluidic device.
    Schmidt BS; Yang AH; Erickson D; Lipson M
    Opt Express; 2007 Oct; 15(22):14322-34. PubMed ID: 19550709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical trapping force combining an optical fiber probe and an AFM metallic probe.
    Liu B; Yang L; Wang Y
    Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface transport and stable trapping of particles and cells by an optical waveguide loop.
    Hellesø OG; Løvhaugen P; Subramanian AZ; Wilkinson JS; Ahluwalia BS
    Lab Chip; 2012 Sep; 12(18):3436-40. PubMed ID: 22814473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis.
    Aubry N; Singh P
    Electrophoresis; 2006 Feb; 27(3):703-15. PubMed ID: 16400702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic particle manipulation in a liquid-core/liquid-cladding waveguide.
    Lee KS; Yoon SY; Lee KH; Kim SB; Sung HJ; Kim SS
    Opt Express; 2012 Jul; 20(16):17348-58. PubMed ID: 23038286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomanipulation using near field photonics.
    Erickson D; Serey X; Chen YF; Mandal S
    Lab Chip; 2011 Mar; 11(6):995-1009. PubMed ID: 21243158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-dependent optofluidic particle trapping and circulation.
    Blakely JT; Gordon R; Sinton D
    Lab Chip; 2008 Aug; 8(8):1350-6. PubMed ID: 18651078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic immobility of particles trapped in liquid-filled hollow-core photonic crystal fiber.
    Garbos MK; Euser TG; Russell PS
    Opt Express; 2011 Sep; 19(20):19643-52. PubMed ID: 21996905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of liquid-to-solid coupling and other performance parameters for microfluidically reconfigurable photonic systems.
    Jung EE; Chung AJ; Erickson D
    Opt Express; 2010 May; 18(11):10973-84. PubMed ID: 20588953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable trapping and releasing of nanoparticles by a standing wave on optical waveguides.
    An R; Wang G; Ji W; Jiao W; Jiang M; Chang Y; Xu X; Zou N; Zhang X
    Opt Lett; 2018 Aug; 43(16):3901-3904. PubMed ID: 30106912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics.
    Kayani AA; Zhang C; Khoshmanesh K; Campbell JL; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Mar; 31(6):1071-9. PubMed ID: 20309917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.
    Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ
    Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel.
    Walker ZJ; Wells T; Belliston E; Walker SB; Zeller C; Sampad MJN; Saiduzzaman SM; Schmidt H; Hawkins AR
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated microparticle sorting system based on near-field optical forces and a structural perturbation.
    Lin S; Crozier KB
    Opt Express; 2012 Feb; 20(4):3367-74. PubMed ID: 22418095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-velocity transport of nanoparticles through 1-D nanochannels at very large particle to channel diameter ratios.
    Vankrunkelsven S; Clicq D; Pappaert K; Baron GV; Desmet G
    Anal Chem; 2004 Jun; 76(11):3005-11. PubMed ID: 15167775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.