BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21817547)

  • 21. Atomic-Scale Investigation of the Lattice-Asymmetry-Driven Anisotropic Sublimation in GaN.
    Sheng S; Wang T; Liu S; Liu F; Sheng B; Yuan Y; Li D; Chen Z; Tao R; Chen L; Zhang B; Yang J; Wang P; Wang D; Sun X; Zhang J; Xu J; Ge W; Shen B; Wang X
    Adv Sci (Weinh); 2022 Aug; 9(22):e2106028. PubMed ID: 35652490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abnormal photoluminescence properties of GaN nanorods grown on Si(111) by molecular-beam epitaxy.
    Park YS; Kang TW; Taylor RA
    Nanotechnology; 2008 Nov; 19(47):475402. PubMed ID: 21836271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.
    Heilmann M; Munshi AM; Sarau G; Göbelt M; Tessarek C; Fauske VT; van Helvoort AT; Yang J; Latzel M; Hoffmann B; Conibeer G; Weman H; Christiansen S
    Nano Lett; 2016 Jun; 16(6):3524-32. PubMed ID: 27124605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of hexagonal Sb2Te3 nanoplates into nanorings driven by growth temperature.
    Wang W; Long D; Liang Y; Zhang G; Zeng B; He Q
    Langmuir; 2011 Jan; 27(2):815-9. PubMed ID: 21171645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstructural and compositional characteristics of GaN films grown on a ZnO-buffered Si (111) wafer.
    Luo XH; Wang RM; Zhang XP; Zhang HZ; Yu DP; Luo MC
    Micron; 2004; 35(6):475-80. PubMed ID: 15120133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition.
    Shih HY; Lin MC; Chen LY; Chen MJ
    Nanotechnology; 2015 Jan; 26(1):014002. PubMed ID: 25494474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of InN epitaxial films and nanorods grown on GaN template by RF-MOMBE.
    Chen WC; Kuo SY; Wang WL; Tian JS; Lin WT; Lai FI; Chang L
    Nanoscale Res Lett; 2012 Aug; 7(1):468. PubMed ID: 22908859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled hydrothermal synthesis and growth mechanism of various nanostructured films of copper and silver tellurides.
    Zhang L; Ai Z; Jia F; Liu L; Hu X; Yu JC
    Chemistry; 2006 May; 12(15):4185-90. PubMed ID: 16521142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of ZnO nanoparticle interlayer on the growth and morphology of broom-like single crystalline gallium nitride.
    Uthirakumar P; Suh EK; Hong CH
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5351-5. PubMed ID: 19198453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size-tunable synthesis of SiO(2) nanotubes via a simple in situ templatelike process.
    Shen G; Bando Y; Golberg D
    J Phys Chem B; 2006 Nov; 110(46):23170-4. PubMed ID: 17107161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale fabrication and luminescence properties of GaN nanostructures by a soft UV-curing nanoimprint lithography.
    Zhuang Z; Guo X; Zhang G; Liu B; Zhang R; Zhi T; Tao T; Ge H; Ren F; Xie Z; Zheng Y
    Nanotechnology; 2013 Oct; 24(40):405303. PubMed ID: 24029728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ synthesis of platelet graphite nanofibers from thermal decomposition of poly(ethylene glycol).
    Huang CW; Li YY
    J Phys Chem B; 2006 Nov; 110(46):23242-6. PubMed ID: 17107172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new hydrothermal route for synthesis of molybdenum disulphide nanorods and related nanostructures.
    Ota JR; Srivastava SK
    J Nanosci Nanotechnol; 2006 Jan; 6(1):168-74. PubMed ID: 16573090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence.
    Zhang H; Yang D; Ma X; Du N; Wu J; Que D
    J Phys Chem B; 2006 Jan; 110(2):827-30. PubMed ID: 16471610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced ferromagnetism and tunable saturation magnetization of Mn/C-codoped GaN nanostructures synthesized by carbothermal nitridation.
    Wang Z; Huang B; Yu L; Dai Y; Wang P; Qin X; Zhang X; Wei J; Zhan J; Jing X; Liu H; Whangbo MH
    J Am Chem Soc; 2008 Dec; 130(48):16366-73. PubMed ID: 19006388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Built-in surface electric field, piezoelectricity and photoelastic effect in GaN nanorods for nanophotonic devices.
    Su WS; Chen TT; Cheng CL; Fu SP; Chen YF; Hsiao CL; Tu LW
    Nanotechnology; 2008 Jun; 19(23):235401. PubMed ID: 21825790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A facile single-source route to CdS nanorods.
    Cai W; Li Z; Sui J
    Nanotechnology; 2008 Nov; 19(46):465606. PubMed ID: 21836253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of GaN-Based Thermal Decomposition in Hydrogen Atmospheres for Substrate-Reclamation Processing.
    Huang SY; Lin JC; Ou SL
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30355986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Core-shell nanorods of SnS-C and SnSe-C: synthesis and characterization.
    Pol VG; Pol SV; Gedanken A
    Langmuir; 2008 May; 24(9):5135-9. PubMed ID: 18363419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasonic-assisted preparation of metastable hexagonal MoO3 nanorods and their transformation to microbelts.
    Wu Z; Wang D; Liang X; Sun A
    Ultrason Sonochem; 2011 Jan; 18(1):288-92. PubMed ID: 20655270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.