These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21817567)

  • 21. Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation.
    Sánchez-García JA; Gago R; Caillard R; Redondo-Cubero A; Martin-Gago JA; Palomares FJ; Fernández M; Vázquez L
    J Phys Condens Matter; 2009 Jun; 21(22):224009. PubMed ID: 21715747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time observation of FIB-created dots and ripples on GaAs.
    Rose F; Fujita H; Kawakatsu H
    Nanotechnology; 2008 Jan; 19(3):035301. PubMed ID: 21817564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanopatterning by multiple-ion-beam sputtering.
    Joe M; Kim JH; Choi C; Kahng B; Kim JS
    J Phys Condens Matter; 2009 Jun; 21(22):224011. PubMed ID: 21715749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of incidence angle in the morphology evolution of Ge surfaces irradiated by medium-energy Au ions.
    Dell'Anna R; Iacob E; Barozzi M; Vanzetti L; Hübner R; Böttger R; Giubertoni D; Pepponi G
    J Phys Condens Matter; 2018 Aug; 30(32):324001. PubMed ID: 29947619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ripple formation on silicon by medium energy ion bombardment.
    Chini TK; Datta DP; Bhattacharyya SR
    J Phys Condens Matter; 2009 Jun; 21(22):224004. PubMed ID: 21715743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Independence of interrupted coarsening on initial system order: ion-beam nanopatterning of amorphous versus crystalline silicon targets.
    Muñoz-García J; Gago R; Cuerno R; Sánchez-García JA; Redondo-Cubero A; Castro M; Vázquez L
    J Phys Condens Matter; 2012 Sep; 24(37):375302. PubMed ID: 22913935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic Monte Carlo simulations compared with continuum models and experimental properties of pattern formation during ion beam sputtering.
    Chason E; Chan WL
    J Phys Condens Matter; 2009 Jun; 21(22):224016. PubMed ID: 21715754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion erosion induced nanogrooves: temporal evolution and azimuth dependence.
    Wormeester H; Poelsema B
    J Phys Condens Matter; 2009 Jun; 21(22):224002. PubMed ID: 21715741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content.
    Redondo-Cubero A; Galiana B; Lorenz K; Palomares FJ; Bahena D; Ballesteros C; Hernandez-Calderón I; Vázquez L
    Nanotechnology; 2016 Nov; 27(44):444001. PubMed ID: 27670245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition.
    Wang C; Ke SY; Yang J; Hu WD; Qiu F; Wang RF; Yang Y
    Nanotechnology; 2015 Mar; 26(10):105201. PubMed ID: 25698828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coulomb explosion sputtering of selectively oxidized Si.
    Karmakar P; Bhattacharjee S; Naik V; Sinha AK; Chakrabarti A
    J Phys Condens Matter; 2010 May; 22(17):175005. PubMed ID: 21393663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots.
    Sánchez-García JA; Vázquez L; Gago R; Redondo-Cubero A; Albella JM; Czigány Z
    Nanotechnology; 2008 Sep; 19(35):355306. PubMed ID: 21828846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.
    Liao W; Dai Y; Xie X; Zhou L
    Opt Express; 2014 Jan; 22(1):377-86. PubMed ID: 24514998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. KeV ion-induced effective surface modifications on InP.
    Sulania I; Tripathi A; Kabiraj D; Varma S; Avasthi DK
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4163-7. PubMed ID: 19049195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of metal co-deposition on silicon nanodot patterning dynamics during ion-beam sputtering.
    Gago R; Redondo-Cubero A; Palomares FJ; Vázquez L
    Nanotechnology; 2014 Oct; 25(41):415301. PubMed ID: 25248515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamic-secondary ion mass spectrometry (D-SIMS) ionized by co-sputtering with C60+ and Ar+.
    You YW; Chang HY; Lin WC; Kuo CH; Lee SH; Kao WL; Yen GJ; Chang CJ; Liu CP; Huang CC; Liao HY; Shyue JJ
    Rapid Commun Mass Spectrom; 2011 Oct; 25(19):2897-904. PubMed ID: 21913268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the auxiliary atomic ion beam in C60(+)-Ar+ co-sputtering.
    Lin WC; Liu CP; Kuo CH; Chang HY; Chang CJ; Hsieh TH; Lee SH; You YW; Kao WL; Yen GJ; Huang CC; Shyue JJ
    Analyst; 2011 Mar; 136(5):941-6. PubMed ID: 21152650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of local densification on microscopic morphology evolution during ion-beam sputtering of fused-silica surfaces.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2014 Apr; 53(11):2487-93. PubMed ID: 24787422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of a polysulfone nanofiltration membrane following ion beam irradiation.
    Chennamsetty R; Escobar I
    Langmuir; 2008 May; 24(10):5569-79. PubMed ID: 18439033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uniform ion beam milling of a non-flat surface at off-normal incidence and four azimuths.
    Alkemade PF; Docter MW; Kutchoukov VG
    J Microsc; 2007 Mar; 225(Pt 3):229-35. PubMed ID: 17371445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.