These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21817618)

  • 21. A critical review on thermal conductivity enhancement of graphene-based nanofluids.
    Pavía M; Alajami K; Estellé P; Desforges A; Vigolo B
    Adv Colloid Interface Sci; 2021 Aug; 294():102452. PubMed ID: 34139659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An effective thermal conductivity model of nanofluids with a cubical arrangement of spherical particles.
    Yu W; Choi SU
    J Nanosci Nanotechnol; 2005 Apr; 5(4):580-6. PubMed ID: 16004122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional distribution of carbon nanotubes in copper flake powders.
    Tan Z; Li Z; Fan G; Li W; Liu Q; Zhang W; Zhang D
    Nanotechnology; 2011 Jun; 22(22):225603. PubMed ID: 21454945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laminar heat transfer and friction factor characteristics of carbon nano tube/water nanofluids.
    Rathnakumar P; Mayilsamy K; Suresh S; Murugesan P
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2400-7. PubMed ID: 24745238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.
    Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K
    Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron tunneling in carbon nanotube composites.
    Gau C; Kuo CY; Ko HS
    Nanotechnology; 2009 Sep; 20(39):395705. PubMed ID: 19724108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The electrical properties of polymer nanocomposites with carbon nanotube fillers.
    Hu N; Masuda Z; Yan C; Yamamoto G; Fukunaga H; Hashida T
    Nanotechnology; 2008 May; 19(21):215701. PubMed ID: 21730580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes.
    Bao WS; Meguid SA; Zhu ZH; Meguid MJ
    Nanotechnology; 2011 Dec; 22(48):485704. PubMed ID: 22071680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recyclable and electrically conducting carbon nanotube composite films.
    Zou G; Jain M; Yang H; Zhang Y; Williams D; Jia Q
    Nanoscale; 2010 Mar; 2(3):418-22. PubMed ID: 20644826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites.
    Duong HM; Papavassiliou DV; Mullen KJ; Maruyama S
    Nanotechnology; 2008 Feb; 19(6):065702. PubMed ID: 21730709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature-dependent effect of percolation and Brownian motion on the thermal conductivity of TiO2-ethanol nanofluids.
    Li CC; Hau NY; Wang Y; Soh AK; Feng SP
    Phys Chem Chem Phys; 2016 Jun; 18(22):15363-8. PubMed ID: 27212639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Investigation of Thermal Conductivity and Viscosity of SiO₂/Multiwalled Carbon Nanotube Hybrid Nanofluids.
    Amini F; Miry SZ; Karimi A; Ashjaee M
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3398-3407. PubMed ID: 30744767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond the Maxwell limit: thermal conduction in nanofluids with percolating fluid structures.
    Eapen J; Li J; Yip S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):062501. PubMed ID: 18233882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST; Cahill DG; Shenogin S; Xue L; Ozisik R; Barone P; Usrey M; Strano MS; Siddons G; Shim M; Keblinski P
    Nat Mater; 2003 Nov; 2(11):731-4. PubMed ID: 14556001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental.
    Ali FM; Yunus WM; Moksin MM; Talib ZA
    Rev Sci Instrum; 2010 Jul; 81(7):074901. PubMed ID: 20687751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q; Liu C; Wang X; Fan S
    Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical conductivity modeling and experimental study of densely packed SWCNT networks.
    Jack DA; Yeh CS; Liang Z; Li S; Park JG; Fielding JC
    Nanotechnology; 2010 May; 21(19):195703. PubMed ID: 20407145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.
    Sanchez JA; Mengüç MP
    Nanotechnology; 2008 Feb; 19(7):075702. PubMed ID: 21817650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical and experimental study of radiation induced conductivity change of carbon nanotube filled polymers.
    Liu F; Sun Y; Sun W; Sun Z; Yeow JTW
    Nanotechnology; 2017 Jun; 28(25):255501. PubMed ID: 28452336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe
    Giwa SO; Sharifpur M; Ahmadi MH; Sohel Murshed SM; Meyer JP
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33429998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.