These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21817667)

  • 1. Massive assembly of ZnO nanowire-based integrated devices.
    Kang J; Myung S; Kim B; Oh D; Kim GT; Hong S
    Nanotechnology; 2008 Mar; 19(9):095303. PubMed ID: 21817667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires.
    Lee M; Im J; Lee BY; Myung S; Kang J; Huang L; Kwon YK; Hong S
    Nat Nanotechnol; 2006 Oct; 1(1):66-71. PubMed ID: 18654144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-release assembly of nanowires on stretchable substrates.
    Xu F; Durham JW; Wiley BJ; Zhu Y
    ACS Nano; 2011 Feb; 5(2):1556-63. PubMed ID: 21288046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties.
    Chu FH; Huang CW; Hsin CL; Wang CW; Yu SY; Yeh PH; Wu WW
    Nanoscale; 2012 Mar; 4(5):1471-5. PubMed ID: 21979153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor.
    Liu J; Wu W; Bai S; Qin Y
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4197-200. PubMed ID: 21942652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Lens" effect in directed assembly of nanowires on gradient molecular patterns.
    Myung S; Im J; Huang L; Rao SG; Kim T; Lee DJ; Hong S
    J Phys Chem B; 2006 Jun; 110(21):10217-9. PubMed ID: 16722718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Si nanowire directly grown on a liquid metal substrate--towards wafer scale transferable nanowire arrays with improved visible-light sterilization.
    Wang H; Wang JT; Ou XM; Lee CS; Zhang XH
    Nanotechnology; 2014 Apr; 25(14):145601. PubMed ID: 24622242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct gravure printing of silicon nanowires using entropic attraction forces.
    Seo J; Lee H; Lee S; Lee TI; Myoung JM; Lee T
    Small; 2012 May; 8(10):1614-21. PubMed ID: 22431282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ZnO nanowire vacuum pressure sensor.
    Chang SJ; Hsueh TJ; Hsu CL; Lin YR; Chen IC; Huang BR
    Nanotechnology; 2008 Mar; 19(9):095505. PubMed ID: 21817672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of flower-like CuO-ZnO heterostructure nanowire arrays by photochemical deposition.
    Jung S; Jeon S; Yong K
    Nanotechnology; 2011 Jan; 22(1):015606. PubMed ID: 21135458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays.
    Lee M; Yong K
    Nanotechnology; 2012 May; 23(19):194014. PubMed ID: 22538200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature compressive transfer printing of nanowires for nanoelectronic devices.
    Lee WS; Choi JH; Park I; Lee J
    Langmuir; 2012 Dec; 28(51):17851-8. PubMed ID: 23199260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires.
    Schmidt TM; Miwa RH
    Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.
    Hwang JK; Cho S; Seo EK; Myoung JM; Sung MM
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2843-7. PubMed ID: 20356165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells.
    Guérin VM; Elias J; Nguyen TT; Philippe L; Pauporté T
    Phys Chem Chem Phys; 2012 Oct; 14(37):12948-55. PubMed ID: 22903457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition.
    Subannajui K; Güder F; Danhof J; Menzel A; Yang Y; Kirste L; Wang C; Cimalla V; Schwarz U; Zacharias M
    Nanotechnology; 2012 Jun; 23(23):235607. PubMed ID: 22609898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature.
    Deng SZ; Fan HM; Wang M; Zheng MR; Yi JB; Wu RQ; Tan HR; Sow CH; Ding J; Feng YP; Loh KP
    ACS Nano; 2010 Jan; 4(1):495-505. PubMed ID: 20028113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior.
    Shin HS; Sohn JI; Kim DC; Huck WT; Welland ME; Choi HC; Kang DJ
    Nanotechnology; 2009 Feb; 20(8):085601. PubMed ID: 19417449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-area self-catalysed and selective growth of ZnO nanowires.
    Zha M; Calestani D; Zappettini A; Mosca R; Mazzera M; Lazzarini L; Zanotti L
    Nanotechnology; 2008 Aug; 19(32):325603. PubMed ID: 21828816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermo-compressive transfer printing for facile alignment and robust device integration of nanowires.
    Lee WS; Won S; Park J; Lee J; Park I
    Nanoscale; 2012 Jun; 4(11):3444-9. PubMed ID: 22549520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.