These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21817682)

  • 1. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates.
    Teng FY; Ting JM; Sharma SP; Liao KH
    Nanotechnology; 2008 Mar; 19(9):095607. PubMed ID: 21817682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.
    Takagiwa S; Kanasugi O; Nakamura K; Kushida M
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3289-94. PubMed ID: 27451619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition.
    Wang H; Ren ZF
    Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates.
    Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA
    J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alucone interlayers to minimize stress caused by thermal expansion mismatch between Al₂O₃ films and Teflon substrates.
    Jen SH; George SM; McLean RS; Carcia PF
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1165-73. PubMed ID: 23272996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolithographic fabrication of gated self-aligned parallel electron beam emitters with a single-stranded carbon nanotube.
    Ho J; Ono T; Tsai CH; Esashi M
    Nanotechnology; 2008 Sep; 19(36):365601. PubMed ID: 21828872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abrasion as a catalyst deposition technique for carbon nanotube growth.
    Alvarez NT; Pint CL; Hauge RH; Tour JM
    J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method.
    Kim BJ; Kim JP; Park JS
    Nanoscale Res Lett; 2014; 9(1):236. PubMed ID: 24959105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes.
    Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J
    Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of iron concentration on the growth of carbon nanotubes on clay surface.
    Huakang F; Miao D; Qiang Z
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1981-9. PubMed ID: 22423639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst.
    Lim YD; Avramchuck AV; Grapov D; Tan CW; Tay BK; Aditya S; Labunov V
    ACS Omega; 2017 Sep; 2(9):6063-6071. PubMed ID: 31457855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor.
    Wang P; Lu J; Zhou O
    Nanotechnology; 2008 May; 19(18):185605. PubMed ID: 21825693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating.
    Wu WT; Chen KH; Hsu CM
    Nanotechnology; 2006 Sep; 17(18):4542-7. PubMed ID: 21727575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet catalyst-support films for production of vertically aligned carbon nanotubes.
    Alvarez NT; Hamilton CE; Pint CL; Orbaek A; Yao J; Frosinini AL; Barron AR; Tour JM; Hauge RH
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1851-6. PubMed ID: 20540507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors governing the growth mode of carbon nanotubes on carbon-based substrates.
    Kim KJ; Yu WR; Youk JH; Lee J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14041-8. PubMed ID: 22990211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of free-standing carbon nanotube arrays produced using two-step floating-ferrocene chemical vapor deposition.
    Yang X; Yuan L; Peterson VK; Minett AI; Yin Y; Harris AT
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1417-22. PubMed ID: 22311688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of carbon nanotube interlayer in enhancing the electron field emission behavior of ultrananocrystalline diamond coated Si-tip arrays.
    Chang TH; Kunuku S; Kurian J; Manekkathodi A; Chen LJ; Leou KC; Tai NH; Lin IN
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7732-40. PubMed ID: 25793425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.