BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21817687)

  • 1. Fabrication of a multi-scale nanostructure of TiO(2) for application in dye-sensitized solar cells.
    Kuo CY; Lu SY
    Nanotechnology; 2008 Mar; 19(9):095705. PubMed ID: 21817687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells.
    Hara K; Wang ZS; Sato T; Furube A; Katoh R; Sugihara H; Dan-Oh Y; Kasada C; Shinpo A; Suga S
    J Phys Chem B; 2005 Aug; 109(32):15476-82. PubMed ID: 16852963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-layer coating of SrCO3/TiO2 on nanoporous TiO2 for efficient dye-sensitized solar cells.
    Wang S; Zhang X; Zhou G; Wang ZS
    Phys Chem Chem Phys; 2012 Jan; 14(2):816-22. PubMed ID: 22108906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film.
    Kim YJ; Lee YH; Lee MH; Kim HJ; Pan JH; Lim GI; Choi YS; Kim K; Park NG; Lee C; Lee WI
    Langmuir; 2008 Nov; 24(22):13225-30. PubMed ID: 18922027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical twin-scale inverse opal TiO2 electrodes for dye-sensitized solar cells.
    Cho CY; Moon JH
    Langmuir; 2012 Jun; 28(25):9372-7. PubMed ID: 22676971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells.
    Law M; Greene LE; Radenovic A; Kuykendall T; Liphardt J; Yang P
    J Phys Chem B; 2006 Nov; 110(45):22652-63. PubMed ID: 17092013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment.
    Shin JH; Moon JH
    Langmuir; 2011 May; 27(10):6311-5. PubMed ID: 21488619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on the dynamics of electron transport and recombination in TiO2 nanotube/nanoparticle composite electrodes for dye-sensitized solar cells.
    Mohammadpour R; Iraji zad A; Hagfeldt A; Boschloo G
    Phys Chem Chem Phys; 2011 Dec; 13(48):21487-91. PubMed ID: 22051895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells.
    Shin JH; Kang JH; Jin WM; Park JH; Cho YS; Moon JH
    Langmuir; 2011 Jan; 27(2):856-60. PubMed ID: 21155579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.
    Zhang X; Thavasi V; Mhaisalkar SG; Ramakrishna S
    Nanoscale; 2012 Mar; 4(5):1707-16. PubMed ID: 22315140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical TiO2 flowers built from TiO2 nanotubes for efficient Pt-free based flexible dye-sensitized solar cells.
    Lei BX; Luo QP; Yu XY; Wu WQ; Su CY; Kuang DB
    Phys Chem Chem Phys; 2012 Oct; 14(38):13175-9. PubMed ID: 22914771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells.
    Calogero G; Bonaccorso F; Maragò OM; Gucciardi PG; Di Marco G
    Dalton Trans; 2010 Mar; 39(11):2903-9. PubMed ID: 20200718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells.
    Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C
    Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating titania morphology and chemical composition with dye-sensitized solar cell performance.
    Santulli AC; Koenigsmann C; Tiano AL; DeRosa D; Wong SS
    Nanotechnology; 2011 Jun; 22(24):245402. PubMed ID: 21508451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of TiO2 with COOH-functionalized germanium nanoparticles to enhance the photocurrent of dye-sensitized solar cells.
    Kim CH; Ha ES; Baik H; Kim KJ
    Chem Asian J; 2011 Mar; 6(3):850-5. PubMed ID: 21225970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells.
    Kim JY; Kang SH; Kim HS; Sung YE
    Langmuir; 2010 Feb; 26(4):2864-70. PubMed ID: 19835409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells.
    Lee SH; Abrams NM; Hoertz PG; Barber GD; Halaoui LI; Mallouk TE
    J Phys Chem B; 2008 Nov; 112(46):14415-21. PubMed ID: 18925776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.