These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21817701)

  • 1. An approach to fabricating chemical sensors based on ZnO nanorod arrays.
    Park JY; Song DE; Kim SS
    Nanotechnology; 2008 Mar; 19(10):105503. PubMed ID: 21817701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable growth of laterally aligned zinc oxide nanorod arrays on a selected surface of the silicon substrate by a catalyst-free vapor solid process--a technique for growing nanocircuits.
    Lu W; Jiang C; Caudle D; Tang C; Sun Q; Xu J; Song J
    Phys Chem Chem Phys; 2013 Aug; 15(32):13532-7. PubMed ID: 23824182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size control of ZnO nanorod arrays grown by metalorganic chemical vapour deposition.
    Park JY; Lee DJ; Kim SS
    Nanotechnology; 2005 Oct; 16(10):2044-7. PubMed ID: 20817968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors.
    Huang H; Ong CY; Guo J; White T; Tse MS; Tan OK
    Nanoscale; 2010 Jul; 2(7):1203-7. PubMed ID: 20648350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization and manipulation of ZnO nanorod arrays on sapphire substrates using a catalyst-free metalorganic chemical vapor deposition technique.
    Wu CC; Wu DS; Lin PR; Chen TN; Horng RH
    J Nanosci Nanotechnol; 2010 May; 10(5):3001-11. PubMed ID: 20358892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays.
    Park JY; Choi SW; Kim SS
    Nanoscale Res Lett; 2009 Nov; 5(2):353-359. PubMed ID: 20672125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sol-gel assisted ZnO nanorod array template to synthesize TiO(2) nanotube arrays.
    Qiu J; Yu W; Gao X; Li X
    Nanotechnology; 2006 Sep; 17(18):4695-8. PubMed ID: 21727599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The preparation and characterization of 1-D orderly ZnO nanorod arrarys].
    Liu R; Zhang T; Zhao SL; Xu Z; Zhang FJ; Yuan GC; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2249-53. PubMed ID: 19123382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled growth of well-aligned ZnO nanorod array using a novel solution method.
    Tak Y; Yong K
    J Phys Chem B; 2005 Oct; 109(41):19263-9. PubMed ID: 16853488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eutectic condensation and nucleation in vapor-liquid-solid grown ZnO nanorod arrays on Si substrate.
    Wu CX; Zhou M; Zhang SG; Xu CX
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6978-82. PubMed ID: 24245173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the shape of nanorod arrays on the nanocarpet effect.
    Fan JG; Fu JX; Collins A; Zhao YP
    Nanotechnology; 2008 Jan; 19(4):045713. PubMed ID: 21817530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature growth and characterization of single crystalline ZnO nanorod arrays using a catalyst-free inductively coupled plasma-metal organic chemical vapor deposition.
    Jeong SH; Lee CB; Moon WJ; Song HJ
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5098-103. PubMed ID: 19198399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films.
    Hsu CH; Chen DH
    Nanotechnology; 2010 Jul; 21(28):285603. PubMed ID: 20562490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Design of ZnO Nanorod Arrays Coated with MnOx for High Electrochemical Stability of a Pseudocapacitor Electrode.
    Chen HC; Lyu YR; Fang A; Lee GJ; Karuppasamy L; Wu JJ; Lin CK; Anandan S; Chen CY
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32155885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.
    Huh J; Park J; Kim GT; Park JY
    Nanotechnology; 2011 Feb; 22(8):085502. PubMed ID: 21242633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective growth of ZnO nanorods on hydrophobic Si nanorod arrays.
    Lu MY; Wang YJ; Hong MH; Chiu CY; You SJ; Lu MP
    Nanotechnology; 2015 Feb; 26(5):055604. PubMed ID: 25590263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale growth of density-tunable aligned ZnO nanorods arrays on GaN QDs.
    Qi Z; Li S; Sun S; Zhang W; Ye W; Fang Y; Tian Y; Dai J; Chen C
    Nanotechnology; 2015 Oct; 26(41):415601. PubMed ID: 26390848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.
    Haberkorn N; Weber SA; Berger R; Theato P
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1573-80. PubMed ID: 20438060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.