These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 21817784)
1. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique. Lahiri D; Benaduce AP; Kos L; Agarwal A Nanotechnology; 2011 Sep; 22(35):355703. PubMed ID: 21817784 [TBL] [Abstract][Full Text] [Related]
2. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Balani K; Anderson R; Laha T; Andara M; Tercero J; Crumpler E; Agarwal A Biomaterials; 2007 Feb; 28(4):618-24. PubMed ID: 17007921 [TBL] [Abstract][Full Text] [Related]
3. Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating. Lahiri D; Benaduce AP; Rouzaud F; Solomon J; Keshri AK; Kos L; Agarwal A J Biomed Mater Res A; 2011 Jan; 96(1):1-12. PubMed ID: 20945477 [TBL] [Abstract][Full Text] [Related]
4. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Hahn BD; Lee JM; Park DS; Choi JJ; Ryu J; Yoon WH; Lee BK; Shin DS; Kim HE Acta Biomater; 2009 Oct; 5(8):3205-14. PubMed ID: 19446047 [TBL] [Abstract][Full Text] [Related]
5. Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. Dimitrievska S; Bureau MN; Antoniou J; Mwale F; Petit A; Lima RS; Marple BR J Biomed Mater Res A; 2011 Sep; 98(4):576-88. PubMed ID: 21702080 [TBL] [Abstract][Full Text] [Related]
6. Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. Sato M; Slamovich EB; Webster TJ Biomaterials; 2005 Apr; 26(12):1349-57. PubMed ID: 15482822 [TBL] [Abstract][Full Text] [Related]
7. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets. Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708 [TBL] [Abstract][Full Text] [Related]
8. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Nelson M; Balasundaram G; Webster TJ Int J Nanomedicine; 2006; 1(3):339-49. PubMed ID: 17717974 [TBL] [Abstract][Full Text] [Related]
9. Enhanced effects of nano-scale topography on the bioactivity and osteoblast behaviors of micron rough ZrO2 coatings. Wang G; Liu X; Zreiqat H; Ding C Colloids Surf B Biointerfaces; 2011 Sep; 86(2):267-74. PubMed ID: 21571508 [TBL] [Abstract][Full Text] [Related]
10. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Miyauchi T; Yamada M; Yamamoto A; Iwasa F; Suzawa T; Kamijo R; Baba K; Ogawa T Biomaterials; 2010 May; 31(14):3827-39. PubMed ID: 20153521 [TBL] [Abstract][Full Text] [Related]
12. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. Sato M; Aslani A; Sambito MA; Kalkhoran NM; Slamovich EB; Webster TJ J Biomed Mater Res A; 2008 Jan; 84(1):265-72. PubMed ID: 17607739 [TBL] [Abstract][Full Text] [Related]
13. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy. Xiong J; Li Y; Hodgson PD; Wen C J Biomed Mater Res A; 2010 Dec; 95(3):766-73. PubMed ID: 20725978 [TBL] [Abstract][Full Text] [Related]
14. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
15. Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces. Park BS; Heo SJ; Kim CS; Oh JE; Kim JM; Lee G; Park WH; Chung CP; Min BM J Biomed Mater Res A; 2005 Sep; 74(4):640-51. PubMed ID: 16015642 [TBL] [Abstract][Full Text] [Related]
16. Osteoblast proliferation on hydroxyapatite coated substrates prepared by right angle magnetron sputtering. Hong Z; Mello A; Yoshida T; Luan L; Stern PH; Rossi A; Ellis DE; Ketterson JB J Biomed Mater Res A; 2010 Jun; 93(3):878-85. PubMed ID: 19705463 [TBL] [Abstract][Full Text] [Related]
17. Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates. Ji X; Lou W; Wang Q; Ma J; Xu H; Bai Q; Liu C; Liu J Int J Mol Sci; 2012; 13(4):5242-5253. PubMed ID: 22606041 [TBL] [Abstract][Full Text] [Related]
18. Fibronectin preadsorbed on hydroxyapatite together with rough surface structure increases osteoblasts' adhesion "in vitro": the theoretical usefulness of fibronectin preadsorption on hydroxyapatite to increase permanent stability and longevity in spine implants. Deligianni D; Korovessis P; Porte-Derrieu MC; Amedee J J Spinal Disord Tech; 2005 Jun; 18(3):257-62. PubMed ID: 15905771 [TBL] [Abstract][Full Text] [Related]
20. Biological responses in osteoblast-like cell line according to thin layer hydroxyapatite coatings on anodized titanium. Sohn SH; Jun HK; Kim CS; Kim KN; Chung SM; Shin SW; Ryu JJ; Kim MK J Oral Rehabil; 2006 Dec; 33(12):898-911. PubMed ID: 17168932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]