These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 21818341)
1. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal. Price DP; Nagarajan V; Churbanov A; Houde P; Milligan B; Drake LL; Gustafson JE; Hansen IA PLoS One; 2011; 6(7):e22573. PubMed ID: 21818341 [TBL] [Abstract][Full Text] [Related]
2. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Kapitskaya MZ; Li C; Miura K; Segraves W; Raikhel AS Mol Cell Endocrinol; 2000 Feb; 160(1-2):25-37. PubMed ID: 10715536 [TBL] [Abstract][Full Text] [Related]
3. Differential regulation of ribosomal protein gene expression in Aedes aegypti mosquitoes before and after the blood meal. Niu LL; Fallon AM Insect Mol Biol; 2000 Dec; 9(6):613-23. PubMed ID: 11122470 [TBL] [Abstract][Full Text] [Related]
4. Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes. Isoe J; Collins J; Badgandi H; Day WA; Miesfeld RL Proc Natl Acad Sci U S A; 2011 Jun; 108(24):E211-7. PubMed ID: 21628559 [TBL] [Abstract][Full Text] [Related]
5. A transcriptome analysis of the Aedes aegypti vitellogenic fat body. Feitosa FM; Calvo E; Merino EF; Durham AM; James AA; de Bianchi AG; Marinotti O; Capurro ML J Insect Sci; 2006; 6():1-26. PubMed ID: 19537968 [TBL] [Abstract][Full Text] [Related]
6. Nuclear receptors in the mosquito Aedes aegypti: annotation, hormonal regulation and expression profiling. Cruz J; Sieglaff DH; Arensburger P; Atkinson PW; Raikhel AS FEBS J; 2009 Mar; 276(5):1233-54. PubMed ID: 19183228 [TBL] [Abstract][Full Text] [Related]
7. CREB isoform represses yolk protein gene expression in the mosquito fat body. Dittmer NT; Sun G; Wang SF; Raikhel AS Mol Cell Endocrinol; 2003 Nov; 210(1-2):39-49. PubMed ID: 14615059 [TBL] [Abstract][Full Text] [Related]
8. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti. Bonizzoni M; Dunn WA; Campbell CL; Olson KE; Dimon MT; Marinotti O; James AA BMC Genomics; 2011 Jan; 12():82. PubMed ID: 21276245 [TBL] [Abstract][Full Text] [Related]
9. Expression of genes encoding proteins involved in ecdysteroidogenesis in the female mosquito, Aedes aegypti. Sieglaff DH; Duncan KA; Brown MR Insect Biochem Mol Biol; 2005 May; 35(5):471-90. PubMed ID: 15804580 [TBL] [Abstract][Full Text] [Related]
10. Increased Akt signaling in the mosquito fat body increases adult survivorship. Arik AJ; Hun LV; Quicke K; Piatt M; Ziegler R; Scaraffia PY; Badgandi H; Riehle MA FASEB J; 2015 Apr; 29(4):1404-13. PubMed ID: 25550465 [TBL] [Abstract][Full Text] [Related]
11. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti. Bryant B; Macdonald W; Raikhel AS Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22391-8. PubMed ID: 21115818 [TBL] [Abstract][Full Text] [Related]
12. Indirect control of yolk protein genes by 20-hydroxyecdysone in the fat body of the mosquito, Aedes aegypti. Deitsch KW; Chen JS; Raikhel AS Insect Biochem Mol Biol; 1995 Apr; 25(4):449-54. PubMed ID: 7742832 [TBL] [Abstract][Full Text] [Related]
13. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. Poelchau MF; Reynolds JA; Denlinger DL; Elsik CG; Armbruster PA BMC Genomics; 2011 Dec; 12():619. PubMed ID: 22185595 [TBL] [Abstract][Full Text] [Related]
14. In vivo functional genomic studies of sterol carrier protein-2 gene in the yellow fever mosquito. Peng R; Maklokova VI; Chandrashekhar JH; Lan Q PLoS One; 2011 Mar; 6(3):e18030. PubMed ID: 21437205 [TBL] [Abstract][Full Text] [Related]
15. A novel GATA factor transcriptionally represses yolk protein precursor genes in the mosquito Aedes aegypti via interaction with the CtBP corepressor. MartÃn D; Piulachs MD; Raikhel AS Mol Cell Biol; 2001 Jan; 21(1):164-74. PubMed ID: 11113191 [TBL] [Abstract][Full Text] [Related]
16. AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family. Hansen IA; Boudko DY; Shiao SH; Voronov DA; Meleshkevitch EA; Drake LL; Aguirre SE; Fox JM; Attardo GM; Raikhel AS J Biol Chem; 2011 Mar; 286(12):10803-13. PubMed ID: 21262963 [TBL] [Abstract][Full Text] [Related]
17. Hormonal regulation of microRNA expression dynamics in the gut of the yellow fever mosquito Zhang X; Raikhel AS RNA Biol; 2021 Nov; 18(11):1682-1691. PubMed ID: 33317406 [TBL] [Abstract][Full Text] [Related]
18. Regulation of Gene Expression Patterns in Mosquito Reproduction. Roy S; Saha TT; Johnson L; Zhao B; Ha J; White KP; Girke T; Zou Z; Raikhel AS PLoS Genet; 2015 Aug; 11(8):e1005450. PubMed ID: 26274815 [TBL] [Abstract][Full Text] [Related]
19. A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti. Mane-Padros D; Cruz J; Cheng A; Raikhel AS PLoS One; 2012; 7(9):e45019. PubMed ID: 23049766 [TBL] [Abstract][Full Text] [Related]
20. SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. Carpenter VK; Drake LL; Aguirre SE; Price DP; Rodriguez SD; Hansen IA J Insect Physiol; 2012 Apr; 58(4):513-22. PubMed ID: 22266018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]