These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21818341)

  • 21. Insights into the transcriptome of oenocytes from Aedes aegypti pupae.
    Martins GF; Ramalho-Ortigão JM; Lobo NF; Severson DW; McDowell MA; Pimenta PF
    Mem Inst Oswaldo Cruz; 2011 May; 106(3):308-15. PubMed ID: 21655818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti.
    Drake LL; Rodriguez SD; Hansen IA
    Sci Rep; 2015 Jan; 5():7795. PubMed ID: 25589229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Deep Insight into the Sialome of Male and Female Aedes aegypti Mosquitoes.
    Ribeiro JM; Martin-Martin I; Arcà B; Calvo E
    PLoS One; 2016; 11(3):e0151400. PubMed ID: 26999592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis of Aedes aegypti lipophorin and gene expression of its apolipoproteins.
    van Heusden MC; Thompson F; Dennis J
    Insect Biochem Mol Biol; 1998 Oct; 28(10):733-8. PubMed ID: 9807220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.
    Zou Z; Souza-Neto J; Xi Z; Kokoza V; Shin SW; Dimopoulos G; Raikhel A
    PLoS Pathog; 2011 Nov; 7(11):e1002394. PubMed ID: 22114564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV).
    Zhang F; Guo H; Zheng H; Zhou T; Zhou Y; Wang S; Fang R; Qian W; Chen X
    BMC Genomics; 2010 May; 11():303. PubMed ID: 20462456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles.
    Bryant B; Raikhel AS
    PLoS One; 2011; 6(11):e25502. PubMed ID: 22125592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade.
    Kokoza VA; Martin D; Mienaltowski MJ; Ahmed A; Morton CM; Raikhel AS
    Gene; 2001 Aug; 274(1-2):47-65. PubMed ID: 11674997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hormone-dependent activation and repression of microRNAs by the ecdysone receptor in the dengue vector mosquito
    He YZ; Aksoy E; Ding Y; Raikhel AS
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34155112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of
    Zhang X; Aksoy E; Girke T; Raikhel AS; Karginov FV
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1895-E1903. PubMed ID: 28223504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted gene expression in the transgenic Aedes aegypti using the binary Gal4-UAS system.
    Kokoza VA; Raikhel AS
    Insect Biochem Mol Biol; 2011 Aug; 41(8):637-44. PubMed ID: 21536128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human blood microRNA hsa-miR-21-5p induces vitellogenin in the mosquito Aedes aegypti.
    Perdomo HD; Hussain M; Parry R; Etebari K; Hedges LM; Zhang G; Schulz BL; Asgari S
    Commun Biol; 2021 Jul; 4(1):856. PubMed ID: 34244602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti.
    Geiser DL; Zhou G; Mayo JJ; Winzerling JJ
    Insect Sci; 2013 Oct; 20(5):601-19. PubMed ID: 23956079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti.
    Roy SG; Hansen IA; Raikhel AS
    Insect Biochem Mol Biol; 2007 Dec; 37(12):1317-26. PubMed ID: 17967350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptomic analyses of Aedes aegypti cultured cells and ex vivo midguts in response to an excess or deficiency of heme: a quest for transcriptionally-regulated heme transporters.
    Eggleston H; Adelman ZN
    BMC Genomics; 2020 Aug; 21(1):604. PubMed ID: 32867680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitelline envelope genes of the yellow fever mosquito, Aedes aegypti.
    Edwards MJ; Severson DW; Hagedorn HH
    Insect Biochem Mol Biol; 1998 Dec; 28(12):915-25. PubMed ID: 9887508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti.
    Roy SG; Raikhel AS
    FASEB J; 2012 Mar; 26(3):1334-42. PubMed ID: 22159149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the mosquito lysosomal aspartic protease gene: an insect housekeeping gene with fat body-enhanced expression.
    Dittmer NT; Raikhel AS
    Insect Biochem Mol Biol; 1997 Apr; 27(4):323-35. PubMed ID: 9134712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Juvenile hormone and its receptor methoprene-tolerant promote ribosomal biogenesis and vitellogenesis in the
    Wang JL; Saha TT; Zhang Y; Zhang C; Raikhel AS
    J Biol Chem; 2017 Jun; 292(24):10306-10315. PubMed ID: 28446607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipophorin as a yolk protein precursor in the mosquito, Aedes aegypti.
    Sun J; Hiraoka T; Dittmer NT; Cho KH; Raikhel AS
    Insect Biochem Mol Biol; 2000 Dec; 30(12):1161-71. PubMed ID: 11044662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.