These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 21818683)
1. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Bleeker PM; Spyropoulou EA; Diergaarde PJ; Volpin H; De Both MT; Zerbe P; Bohlmann J; Falara V; Matsuba Y; Pichersky E; Haring MA; Schuurink RC Plant Mol Biol; 2011 Nov; 77(4-5):323-36. PubMed ID: 21818683 [TBL] [Abstract][Full Text] [Related]
2. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Gonzales-Vigil E; Hufnagel DE; Kim J; Last RL; Barry CS Plant J; 2012 Sep; 71(6):921-35. PubMed ID: 22563774 [TBL] [Abstract][Full Text] [Related]
3. Glandular trichome-derived sesquiterpenes of wild tomato accessions (Solanum habrochaites) affect aphid performance and feeding behavior. Wang F; Park YL; Gutensohn M Phytochemistry; 2020 Dec; 180():112532. PubMed ID: 33045464 [TBL] [Abstract][Full Text] [Related]
4. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Sallaud C; Rontein D; Onillon S; Jabès F; Duffé P; Giacalone C; Thoraval S; Escoffier C; Herbette G; Leonhardt N; Causse M; Tissier A Plant Cell; 2009 Jan; 21(1):301-17. PubMed ID: 19155349 [TBL] [Abstract][Full Text] [Related]
5. Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Therezan R; Kortbeek R; Vendemiatti E; Legarrea S; de Alencar SM; Schuurink RC; Bleeker P; Peres LEP Planta; 2021 Jun; 254(1):11. PubMed ID: 34160697 [TBL] [Abstract][Full Text] [Related]
10. Evolution of a complex locus for terpene biosynthesis in solanum. Matsuba Y; Nguyen TT; Wiegert K; Falara V; Gonzales-Vigil E; Leong B; Schäfer P; Kudrna D; Wing RA; Bolger AM; Usadel B; Tissier A; Fernie AR; Barry CS; Pichersky E Plant Cell; 2013 Jun; 25(6):2022-36. PubMed ID: 23757397 [TBL] [Abstract][Full Text] [Related]
11. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases. Kang JH; Gonzales-Vigil E; Matsuba Y; Pichersky E; Barry CS Plant Physiol; 2014 Jan; 164(1):80-91. PubMed ID: 24254315 [TBL] [Abstract][Full Text] [Related]
12. Diverse responses of wild and cultivated tomato to BABA, oligandrin and Oidium neolycopersici infection. Satková P; Starý T; Plešková V; Zapletalová M; Kašparovský T; Cincalová-Kubienová L; Luhová L; Mieslerová B; Mikulík J; Lochman J; Petrivalský M Ann Bot; 2017 Mar; 119(5):829-840. PubMed ID: 27660055 [TBL] [Abstract][Full Text] [Related]
13. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. Steele CL; Crock J; Bohlmann J; Croteau R J Biol Chem; 1998 Jan; 273(4):2078-89. PubMed ID: 9442047 [TBL] [Abstract][Full Text] [Related]
14. Epidermis-Specific Metabolic Engineering of Sesquiterpene Formation in Tomato Affects the Performance of Potato Aphid Wang F; Park YL; Gutensohn M Front Plant Sci; 2021; 12():793313. PubMed ID: 35003184 [TBL] [Abstract][Full Text] [Related]
15. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Bleeker PM; Mirabella R; Diergaarde PJ; VanDoorn A; Tissier A; Kant MR; Prins M; de Vos M; Haring MA; Schuurink RC Proc Natl Acad Sci U S A; 2012 Dec; 109(49):20124-9. PubMed ID: 23169639 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites. Schmidt A; Li C; Jones AD; Pichersky E Planta; 2012 Sep; 236(3):839-49. PubMed ID: 22711283 [TBL] [Abstract][Full Text] [Related]
17. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Schilmiller AL; Schauvinhold I; Larson M; Xu R; Charbonneau AL; Schmidt A; Wilkerson C; Last RL; Pichersky E Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10865-70. PubMed ID: 19487664 [TBL] [Abstract][Full Text] [Related]
18. Glandular Trichome-Derived Mono- and Sesquiterpenes of Tomato Have Contrasting Roles in the Interaction with the Potato Aphid Macrosiphum euphorbiae. Wang F; Park YL; Gutensohn M J Chem Ecol; 2021 Feb; 47(2):204-214. PubMed ID: 33447946 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Davidovich-Rikanati R; Lewinsohn E; Bar E; Iijima Y; Pichersky E; Sitrit Y Plant J; 2008 Oct; 56(2):228-238. PubMed ID: 18643974 [TBL] [Abstract][Full Text] [Related]
20. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Lücker J; Bowen P; Bohlmann J Phytochemistry; 2004 Oct; 65(19):2649-59. PubMed ID: 15464152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]