BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 21818806)

  • 1. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry.
    Shestivska V; Nemec A; Dřevínek P; Sovová K; Dryahina K; Spaněl P
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2459-67. PubMed ID: 21818806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection.
    Gilchrist FJ; Bright-Thomas RJ; Jones AM; Smith D; Spaněl P; Webb AK; Lenney W
    J Breath Res; 2013 Jun; 7(2):026010. PubMed ID: 23680696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis.
    Enderby B; Smith D; Carroll W; Lenney W
    Pediatr Pulmonol; 2009 Feb; 44(2):142-7. PubMed ID: 19148935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry.
    Carroll W; Lenney W; Wang T; Spanel P; Alcock A; Smith D
    Pediatr Pulmonol; 2005 May; 39(5):452-6. PubMed ID: 15765542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide.
    Gilchrist FJ; Razavi C; Webb AK; Jones AM; Spaněl P; Smith D; Lenney W
    J Breath Res; 2012 Sep; 6(3):036004. PubMed ID: 22759377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The analysis of 1-propanol and 2-propanol in humid air samples using selected ion flow tube mass spectrometry.
    Wang T; Carroll W; Lenny W; Boit P; Smith D
    Rapid Commun Mass Spectrom; 2006; 20(2):125-30. PubMed ID: 16331744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis.
    Smith D; Sovová K; Dryahina K; Doušová T; Dřevínek P; Španěl P
    J Breath Res; 2016 May; 10(2):021002. PubMed ID: 27184114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(20):1898-906. PubMed ID: 11013418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of hydrogen cyanide (HCN) in breath using selected ion flow tube mass spectrometry--HCN is not a biomarker of Pseudomonas in chronic suppurative lung disease.
    Dummer J; Storer M; Sturney S; Scott-Thomas A; Chambers S; Swanney M; Epton M
    J Breath Res; 2013 Mar; 7(1):017105. PubMed ID: 23445778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From molecules in space to molecules in breath.
    Smith D
    Paediatr Respir Rev; 2016 Jan; 17():50-2. PubMed ID: 26541224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection?
    Španěl P; Sovová K; Dryahina K; Doušová T; Dřevínek P; Smith D
    J Breath Res; 2016 Aug; 10(3):036013. PubMed ID: 27532768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomics of volatile organic compounds in cystic fibrosis patients and controls.
    Robroeks CM; van Berkel JJ; Dallinga JW; Jöbsis Q; Zimmermann LJ; Hendriks HJ; Wouters MF; van der Grinten CP; van de Kant KD; van Schooten FJ; Dompeling E
    Pediatr Res; 2010 Jul; 68(1):75-80. PubMed ID: 20351658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.
    Dryahina K; Smith D; Spanel P
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing.
    Olivares A; Dryahina K; Navarro JL; Smith D; Spanĕl P; Flores M
    J Agric Food Chem; 2011 Mar; 59(5):1931-8. PubMed ID: 21294565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetone, butanone, pentanone, hexanone and heptanone in the headspace of aqueous solution and urine studied by selected ion flow tube mass spectrometry.
    Pysanenko A; Wang T; Spanel P; Smith D
    Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1097-104. PubMed ID: 19280607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.
    Smith D; Pysanenko A; Spanel P
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1419-25. PubMed ID: 19347971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis.
    Smith D; Spanel P
    Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection.
    Smith D; Spaněl P; Gilchrist FJ; Lenney W
    J Breath Res; 2013 Dec; 7(4):044001. PubMed ID: 24287489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry.
    Spanĕl P; Wang T; Smith D
    Rapid Commun Mass Spectrom; 2004; 18(16):1869-73. PubMed ID: 15329882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in SIFT-MS: breath analysis and other applications.
    Spaněl P; Smith D
    Mass Spectrom Rev; 2011; 30(2):236-67. PubMed ID: 20648679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.