BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21818837)

  • 1. Tissue-specific alterations of methyl group metabolism with DNA hypermethylation in the Zucker (type 2) diabetic fatty rat.
    Williams KT; Schalinske KL
    Diabetes Metab Res Rev; 2012 Feb; 28(2):123-31. PubMed ID: 21818837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folate status modulates the induction of hepatic glycine N-methyltransferase and homocysteine metabolism in diabetic rats.
    Nieman KM; Hartz CS; Szegedi SS; Garrow TA; Sparks JD; Schalinske KL
    Am J Physiol Endocrinol Metab; 2006 Dec; 291(6):E1235-42. PubMed ID: 16835399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type I diabetes leads to tissue-specific DNA hypomethylation in male rats.
    Williams KT; Garrow TA; Schalinske KL
    J Nutr; 2008 Nov; 138(11):2064-9. PubMed ID: 18936199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin administration abrogates perturbation of methyl group and homocysteine metabolism in streptozotocin-treated type 1 diabetic rats.
    Nieman KM; Schalinske KL
    Am J Physiol Endocrinol Metab; 2011 Sep; 301(3):E560-5. PubMed ID: 21730260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbance of methyl group metabolism in alloxan-diabetic sheep.
    Xue GP; Snoswell AM
    Biochem Int; 1985 Jun; 10(6):897-905. PubMed ID: 4038311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in plasma homocysteine levels between Zucker fatty and Zucker diabetic fatty rats following 3 weeks oral administration of organic vanadium compounds.
    Wasan KM; Risovic V; Yuen VG; McNeill JH
    J Trace Elem Med Biol; 2006; 19(4):251-8. PubMed ID: 16443173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur amino acid metabolism in Zucker diabetic fatty rats.
    Kwak HC; Kim YM; Oh SJ; Kim SK
    Biochem Pharmacol; 2015 Aug; 96(3):256-66. PubMed ID: 26047850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of gene expression profiles in insulin-sensitive tissues from pre-diabetic and diabetic Zucker diabetic fatty rats.
    Suh YH; Kim Y; Bang JH; Choi KS; Lee JW; Kim WH; Oh TJ; An S; Jung MH
    J Mol Endocrinol; 2005 Apr; 34(2):299-315. PubMed ID: 15821098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease.
    Pacana T; Cazanave S; Verdianelli A; Patel V; Min HK; Mirshahi F; Quinlivan E; Sanyal AJ
    PLoS One; 2015; 10(8):e0136822. PubMed ID: 26322888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homocysteine metabolism in ZDF (type 2) diabetic rats.
    Wijekoon EP; Hall B; Ratnam S; Brosnan ME; Zeisel SH; Brosnan JT
    Diabetes; 2005 Nov; 54(11):3245-51. PubMed ID: 16249451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved metabolic status and insulin sensitivity in obese fatty (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats treated with the thiazolidinedione, MCC-555.
    Upton R; Widdowson PS; Ishii S; Tanaka H; Williams G
    Br J Pharmacol; 1998 Dec; 125(8):1708-14. PubMed ID: 9886762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat.
    Jacobs RL; House JD; Brosnan ME; Brosnan JT
    Diabetes; 1998 Dec; 47(12):1967-70. PubMed ID: 9836532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of methyl group metabolism by streptozotocin-induced diabetes and all-trans-retinoic acid.
    Nieman KM; Rowling MJ; Garrow TA; Schalinske KL
    J Biol Chem; 2004 Oct; 279(44):45708-12. PubMed ID: 15347642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased aldosterone levels in a model of type 2 diabetes mellitus.
    Fredersdorf S; Endemann DH; Luchner A; Heitzmann D; Ulucan C; Birner C; Schmid P; Stoelcker B; Resch M; Muders F; Riegger GA; Weil J
    Exp Clin Endocrinol Diabetes; 2009 Jan; 117(1):15-20. PubMed ID: 18726873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of dietary selenium (se) and folate on methyl metabolism in liver and colon of rats.
    Uthus EO; Ross SA; Davis CD
    Biol Trace Elem Res; 2006 Mar; 109(3):201-14. PubMed ID: 16632891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homocysteine homeostasis in the rat is maintained by compensatory changes in cystathionine β-synthase, betaine-homocysteine methyltransferase, and phosphatidylethanolamine N-methyltransferase gene transcription occurring in response to maternal protein and folic acid intake during pregnancy and fat intake after weaning.
    Chmurzynska A; Malinowska AM
    Nutr Res; 2011 Jul; 31(7):572-8. PubMed ID: 21840474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonalcoholic hepatic steatosis in Zucker diabetic rats: spontaneous evolution and effects of metformin and fenofibrate.
    Forcheron F; Abdallah P; Basset A; del Carmine P; Haffar G; Beylot M
    Obesity (Silver Spring); 2009 Jul; 17(7):1381-9. PubMed ID: 19553925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-adenosylmethionine and its products.
    Grillo MA; Colombatto S
    Amino Acids; 2008 Feb; 34(2):187-93. PubMed ID: 17334902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in hepatic metabolism of sulfur amino acids in non-obese type-2 diabetic Goto-Kakizaki rats.
    Jung YS; Yun KU; Ryu CS; Oh JM; Kwak HC; Lee JY; Park SK; Kim BH; Oh SJ; Kim SK
    Chem Biol Interact; 2013 Jul; 204(2):80-7. PubMed ID: 23665415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced one-carbon flux towards DNA methylation: Effect of dietary methyl supplements against gamma-radiation-induced epigenetic modifications.
    Batra V; Sridhar S; Devasagayam TP
    Chem Biol Interact; 2010 Feb; 183(3):425-33. PubMed ID: 19931232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.