BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21819069)

  • 1. Proton delivery to ferryl heme in a heme peroxidase: enzymatic use of the Grotthuss mechanism.
    Efimov I; Badyal SK; Metcalfe CL; Macdonald I; Gumiero A; Raven EL; Moody PC
    J Am Chem Soc; 2011 Oct; 133(39):15376-83. PubMed ID: 21819069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the ascorbate peroxidase-salicylhydroxamic acid complex.
    Sharp KH; Moody PC; Brown KA; Raven EL
    Biochemistry; 2004 Jul; 43(27):8644-51. PubMed ID: 15236572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing the protons in a metalloenzyme electron proton transfer pathway.
    Kwon H; Basran J; Devos JM; Suardíaz R; van der Kamp MW; Mulholland AJ; Schrader TE; Ostermann A; Blakeley MP; Moody PCE; Raven EL
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6484-6490. PubMed ID: 32152099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis.
    Macdonald IK; Badyal SK; Ghamsari L; Moody PC; Raven EL
    Biochemistry; 2006 Jun; 45(25):7808-17. PubMed ID: 16784232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XFEL Crystal Structures of Peroxidase Compound II.
    Kwon H; Basran J; Pathak C; Hussain M; Freeman SL; Fielding AJ; Bailey AJ; Stefanou N; Sparkes HA; Tosha T; Yamashita K; Hirata K; Murakami H; Ueno G; Ago H; Tono K; Yamamoto M; Sawai H; Shiro Y; Sugimoto H; Raven EL; Moody PCE
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14578-14585. PubMed ID: 33826799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Ala134 in controlling substrate binding and reactivity in ascorbate peroxidase.
    Turner DD; Lad L; Kwon H; Basran J; Carr KH; Moody PCE; Raven EL
    J Inorg Biochem; 2018 Mar; 180():230-234. PubMed ID: 29317104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the proton-assisted pathway to formation of the catalytically active, ferryl species of P450s by molecular dynamics studies of P450eryF.
    Harris DL; Loew GH
    J Am Chem Soc; 1996 Jul; 118(27):6377-87. PubMed ID: 11540056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sorghum ascorbate peroxidase with four binding sites has activity against ascorbate and phenylpropanoids.
    Zhang B; Lewis JA; Vermerris W; Sattler SE; Kang C
    Plant Physiol; 2023 May; 192(1):102-118. PubMed ID: 36575825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of the ferryl heme in compounds I and II.
    Gumiero A; Metcalfe CL; Pearson AR; Raven EL; Moody PC
    J Biol Chem; 2011 Jan; 286(2):1260-8. PubMed ID: 21062738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tryptophan-208 residue in cytochrome c oxidation by ascorbate peroxidase from Leishmania major-kinetic studies on Trp208Phe mutant and wild type enzyme.
    Yadav RK; Dolai S; Pal S; Adak S
    Biochim Biophys Acta; 2008 May; 1784(5):863-71. PubMed ID: 18342641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism.
    Ma Z; Davidson VL
    Biochem J; 2017 Jul; 474(15):2563-2572. PubMed ID: 28634178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate binding and catalytic mechanism in ascorbate peroxidase: evidence for two ascorbate binding sites.
    Lad L; Mewies M; Raven EL
    Biochemistry; 2002 Nov; 41(46):13774-81. PubMed ID: 12427040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Chemically Programmed Proximal Ligand Enhances the Catalytic Properties of a Heme Enzyme.
    Green AP; Hayashi T; Mittl PR; Hilvert D
    J Am Chem Soc; 2016 Sep; 138(35):11344-52. PubMed ID: 27500802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation and electronic state dependence of proton transfer in the enzymatic cycle of cytochrome P450eryF.
    Harris DL
    J Inorg Biochem; 2002 Sep; 91(4):568-85. PubMed ID: 12237223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two electron-transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography.
    Mandelman D; Jamal J; Poulos TL
    Biochemistry; 1998 Dec; 37(50):17610-7. PubMed ID: 9860877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XFEL Crystal Structures of Peroxidase Compound II.
    Kwon H; Basran J; Pathak C; Hussain M; Freeman SL; Fielding AJ; Bailey AJ; Stefanou N; Sparkes HA; Tosha T; Yamashita K; Hirata K; Murakami H; Ueno G; Ago H; Tono K; Yamamoto M; Sawai H; Shiro Y; Sugimoto H; Raven EL; Moody PCE
    Angew Chem Weinheim Bergstr Ger; 2021 Jun; 133(26):14699-14706. PubMed ID: 38505375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase.
    Kitajima S; Kurioka M; Yoshimoto T; Shindo M; Kanaori K; Tajima K; Oda K
    FEBS J; 2008 Feb; 275(3):470-80. PubMed ID: 18167143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering ascorbate peroxidase activity into cytochrome c peroxidase.
    Meharenna YT; Oertel P; Bhaskar B; Poulos TL
    Biochemistry; 2008 Sep; 47(39):10324-32. PubMed ID: 18771292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the conformational mobility of the active site of a heme peroxidase.
    Gumiero A; Badyal SK; Leeks T; Moody PC; Raven EL
    Dalton Trans; 2013 Mar; 42(9):3170-5. PubMed ID: 23202589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.