BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21819074)

  • 1. Immuno-surface-enhanced coherent anti-stokes Raman scattering microscopy: immunohistochemistry with target-specific metallic nanoprobes and nonlinear Raman microscopy.
    Schlücker S; Salehi M; Bergner G; Schütz M; Ströbel P; Marx A; Petersen I; Dietzek B; Popp J
    Anal Chem; 2011 Sep; 83(18):7081-5. PubMed ID: 21819074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy.
    Schütz M; Steinigeweg D; Salehi M; Kömpe K; Schlücker S
    Chem Commun (Camb); 2011 Apr; 47(14):4216-8. PubMed ID: 21359379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of Raman reporter molecules for tissue imaging by immuno-SERS microscopy.
    Schütz M; Müller CI; Salehi M; Lambert C; Schlücker S
    J Biophotonics; 2011 Jun; 4(6):453-63. PubMed ID: 21298811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity.
    Salehi M; Steinigeweg D; Ströbel P; Marx A; Packeisen J; Schlücker S
    J Biophotonics; 2013 Oct; 6(10):785-92. PubMed ID: 23225645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells.
    Kneipp K; Kneipp H; Kneipp J
    Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells.
    Küstner B; Gellner M; Schütz M; Schöppler F; Marx A; Ströbel P; Adam P; Schmuck C; Schlücker S
    Angew Chem Int Ed Engl; 2009; 48(11):1950-3. PubMed ID: 19191355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of the factors effecting surface-enhanced Raman scattering reporter-labeled immunogold colloids].
    Li SJ; Qiu LQ; Cao PG; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1575-8. PubMed ID: 15828331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells.
    Gregas MK; Scaffidi JP; Lauly B; Vo-Dinh T
    Appl Spectrosc; 2010 Aug; 64(8):858-66. PubMed ID: 20719048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection.
    Shan G; Wang S; Fei X; Liu Y; Yang G
    J Phys Chem B; 2009 Feb; 113(5):1468-72. PubMed ID: 19138135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y; Ueno K; Misawa H
    Chem Commun (Camb); 2011 Mar; 47(12):3505-7. PubMed ID: 21318204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles.
    Nguyen CT; Nguyen JT; Rutledge S; Zhang J; Wang C; Walker GC
    Cancer Lett; 2010 Jun; 292(1):91-7. PubMed ID: 20042272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed metal nanoparticle assembly and the effect on surface-enhanced Raman scattering.
    McKenzie F; Faulds K; Graham D
    Nanoscale; 2010 Jan; 2(1):78-80. PubMed ID: 20648367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles.
    Schwartzberg AM; Oshiro TY; Zhang JZ; Huser T; Talley CE
    Anal Chem; 2006 Jul; 78(13):4732-6. PubMed ID: 16808490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms.
    Knauer M; Ivleva NP; Liu X; Niessner R; Haisch C
    Anal Chem; 2010 Apr; 82(7):2766-72. PubMed ID: 20196561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman microscopy based on doubly-resonant four-wave mixing (DR-FWM).
    Weeks T; Wachsmann-Hogiu S; Huser T
    Opt Express; 2009 Sep; 17(19):17044-51. PubMed ID: 19770922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate.
    Wang N; Yang HF; Zhu X; Zhang R; Wang Y; Huang GF; Zhang ZR
    Nanotechnology; 2009 Aug; 20(31):315603. PubMed ID: 19597257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection.
    Wang HN; Vo-Dinh T
    Small; 2011 Nov; 7(21):3067-74. PubMed ID: 21913327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.