These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 21819094)
1. Mineralogy and geochemistry of Zn-rich mine-drainage precipitates from an MgO passive treatment system by synchrotron-based X-ray analysis. Pérez-López R; Macías F; Caraballo MA; Nieto JM; Román-Ross G; Tucoulou R; Ayora C Environ Sci Technol; 2011 Sep; 45(18):7826-33. PubMed ID: 21819094 [TBL] [Abstract][Full Text] [Related]
2. Speciation of Zn in blast furnace sludge from former sedimentation ponds using synchrotron X-ray diffraction, fluorescence, and absorption spectroscopy. Kretzschmar R; Mansfeldt T; Mandaliev PN; Barmettler K; Marcus MA; Voegelin A Environ Sci Technol; 2012 Nov; 46(22):12381-90. PubMed ID: 23035937 [TBL] [Abstract][Full Text] [Related]
3. Novel approach to zinc removal from circum-neutral mine waters using pelletised recovered hydrous ferric oxide. Mayes WM; Potter HA; Jarvis AP J Hazard Mater; 2009 Feb; 162(1):512-20. PubMed ID: 18583040 [TBL] [Abstract][Full Text] [Related]
4. Biogenic hydroxyapatite (Apatite II™) dissolution kinetics and metal removal from acid mine drainage. Oliva J; Cama J; Cortina JL; Ayora C; De Pablo J J Hazard Mater; 2012 Apr; 213-214():7-18. PubMed ID: 22341745 [TBL] [Abstract][Full Text] [Related]
5. Uptake of Pb by hydrozincite, Zn5(CO3)2(OH)6--implications for remediation. Lattanzi P; Meneghini C; De Giudici G; Podda F J Hazard Mater; 2010 May; 177(1-3):1138-44. PubMed ID: 20045250 [TBL] [Abstract][Full Text] [Related]
6. Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences. Ayora C; Caraballo MA; Macias F; Rötting TS; Carrera J; Nieto JM Environ Sci Pollut Res Int; 2013 Nov; 20(11):7837-53. PubMed ID: 23508532 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials. Navarro A; Cardellach E; Corbella M J Hazard Mater; 2011 Feb; 186(2-3):1576-85. PubMed ID: 21190796 [TBL] [Abstract][Full Text] [Related]
8. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment. Castillo J; Pérez-López R; Caraballo MA; Nieto JM; Martins M; Costa MC; Olías M; Cerón JC; Tucoulou R Sci Total Environ; 2012 Apr; 423():176-84. PubMed ID: 22414495 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal coprecipitation with hydrozincite [Zn(5)(CO(3))(2)(OH)(6)] from mine waters caused by photosynthetic microorganisms. Podda F; Zuddas P; Minacci A; Pepi M; Baldi F Appl Environ Microbiol; 2000 Nov; 66(11):5092-8. PubMed ID: 11055969 [TBL] [Abstract][Full Text] [Related]
10. Use of ochre from an abandoned metal mine in the south east of Ireland for phosphorus sequestration from dairy dirty water. Fenton O; Healy MG; Rodgers M J Environ Qual; 2009; 38(3):1120-5. PubMed ID: 19398509 [TBL] [Abstract][Full Text] [Related]
11. Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Sarmiento AM; DelValls A; Miguel Nieto J; Salamanca MJ; Caraballo MA Sci Total Environ; 2011 Oct; 409(22):4763-71. PubMed ID: 21889789 [TBL] [Abstract][Full Text] [Related]
12. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution. Li W; Livi KJ; Xu W; Siebecker MG; Wang Y; Phillips BL; Sparks DL Environ Sci Technol; 2012 Nov; 46(21):11670-7. PubMed ID: 23043294 [TBL] [Abstract][Full Text] [Related]
13. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques. Zhu Y; Zhang H; Shao L; He P J Environ Sci (China); 2015 Jan; 27():298-308. PubMed ID: 25597689 [TBL] [Abstract][Full Text] [Related]
14. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides. Zhou JZ; Wu YY; Liu C; Orpe A; Liu Q; Xu ZP; Qian GR; Qiao SZ Environ Sci Technol; 2010 Dec; 44(23):8884-90. PubMed ID: 21062046 [TBL] [Abstract][Full Text] [Related]
15. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Claveau-Mallet D; Wallace S; Comeau Y Water Res; 2013 Mar; 47(4):1512-20. PubMed ID: 23305683 [TBL] [Abstract][Full Text] [Related]
16. Metal-binding proteins scanning and determination by combining gel electrophoresis, synchrotron radiation X-ray fluorescence and atomic spectrometry. Verbi FM; Arruda SC; Rodriguez AP; Pérez CA; Arruda MA J Biochem Biophys Methods; 2005 Feb; 62(2):97-109. PubMed ID: 15680280 [TBL] [Abstract][Full Text] [Related]
17. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Kilbride C; Poole J; Hutchings TR Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626 [TBL] [Abstract][Full Text] [Related]
18. A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy. Young LW; Westcott ND; Attenkofer K; Reaney MJ J Synchrotron Radiat; 2006 Jul; 13(Pt 4):304-13. PubMed ID: 16799221 [TBL] [Abstract][Full Text] [Related]
19. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia. Sultan K Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of layered and mixed passive treatment systems for acid mine drainage. Jeen SW; Mattson B Environ Technol; 2016 Nov; 37(22):2835-51. PubMed ID: 26998668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]