These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21819139)

  • 1. Learning to predict chemical reactions.
    Kayala MA; Azencott CA; Chen JH; Baldi P
    J Chem Inf Model; 2011 Sep; 51(9):2209-22. PubMed ID: 21819139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.
    Kayala MA; Baldi P
    J Chem Inf Model; 2012 Oct; 52(10):2526-40. PubMed ID: 22978639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No electron left behind: a rule-based expert system to predict chemical reactions and reaction mechanisms.
    Chen JH; Baldi P
    J Chem Inf Model; 2009 Sep; 49(9):2034-43. PubMed ID: 19719121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction.
    Sadowski P; Fooshee D; Subrahmanya N; Baldi P
    J Chem Inf Model; 2016 Nov; 56(11):2125-2128. PubMed ID: 27749058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.
    Fooshee D; Andronico A; Baldi P
    J Chem Inf Model; 2013 Nov; 53(11):2812-9. PubMed ID: 24160861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Mechanics and Machine Learning Synergies: Graph Attention Neural Networks to Predict Chemical Reactivity.
    Tavakoli M; Mood A; Van Vranken D; Baldi P
    J Chem Inf Model; 2022 May; 62(9):2121-2132. PubMed ID: 35020394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChemDB: a public database of small molecules and related chemoinformatics resources.
    Chen J; Swamidass SJ; Dou Y; Bruand J; Baldi P
    Bioinformatics; 2005 Nov; 21(22):4133-9. PubMed ID: 16174682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.
    Lusci A; Pollastri G; Baldi P
    J Chem Inf Model; 2013 Jul; 53(7):1563-75. PubMed ID: 23795551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChemDB update--full-text search and virtual chemical space.
    Chen JH; Linstead E; Swamidass SJ; Wang D; Baldi P
    Bioinformatics; 2007 Sep; 23(17):2348-51. PubMed ID: 17599932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning of chemical reactivity from databases of organic reactions.
    Carrera GV; Gupta S; Aires-de-Sousa J
    J Comput Aided Mol Des; 2009 Jul; 23(7):419-29. PubMed ID: 19468693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling an organic synthesis robot with machine learning to search for new reactivity.
    Granda JM; Donina L; Dragone V; Long DL; Cronin L
    Nature; 2018 Jul; 559(7714):377-381. PubMed ID: 30022133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expert system for predicting reaction conditions: the Michael reaction case.
    Marcou G; Aires de Sousa J; Latino DA; de Luca A; Horvath D; Rietsch V; Varnek A
    J Chem Inf Model; 2015 Feb; 55(2):239-50. PubMed ID: 25588070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies.
    Jorner K; Brinck T; Norrby PO; Buttar D
    Chem Sci; 2021 Jan; 12(3):1163-1175. PubMed ID: 36299676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction.
    Segler MHS; Waller MP
    Chemistry; 2017 May; 23(25):5966-5971. PubMed ID: 28134452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.
    Baylon JL; Cilfone NA; Gulcher JR; Chittenden TW
    J Chem Inf Model; 2019 Feb; 59(2):673-688. PubMed ID: 30642173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.