These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21819315)

  • 1. The influence of sunlight on the localized corrosion of UNS S31600 in natural seawater.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G
    Biofouling; 2011 Sep; 27(8):837-49. PubMed ID: 21819315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stainless steel in coastal seawater: sunlight counteracts biologically enhanced cathodic kinetics.
    Eashwar M; Lakshman Kumar A; Sreedhar G; Kennedy J; Suresh Bapu RH
    Biofouling; 2014 Sep; 30(8):929-39. PubMed ID: 25237771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P
    Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater.
    Eashwar M; Sathish Kumar P; Ravishankar R; Subramanian G
    Biofouling; 2013; 29(2):185-93. PubMed ID: 23330652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface.
    Orfei LH; Simison S; Busalmen JP
    Environ Sci Technol; 2006 Oct; 40(20):6473-8. PubMed ID: 17120583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enrichment of surface passive film on stainless steel during biofilm development in coastal seawater.
    Eashwar M; Sreedhar G; Lakshman Kumar A; Hariharasuthan R; Kennedy J
    Biofouling; 2015; 31(6):511-25. PubMed ID: 26222313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater.
    Blackwood DJ; Lim CS; Teo SL
    Biofouling; 2010 Oct; 26(7):779-85. PubMed ID: 20818571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures.
    Lee JS; Ray RI; Lowe KL; Jones-Meehan J; Little BJ
    Biofouling; 2003 Apr; 19 Suppl():151-60. PubMed ID: 14618716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of enzymatic catalysis of oxygen reduction on stainless steels under marine biofilm.
    Faimali M; Benedetti A; Pavanello G; Chelossi E; Wrubl F; Mollica A
    Biofouling; 2011 Apr; 27(4):375-84. PubMed ID: 21526439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater.
    Acuña N; Ortega-Morales BO; Valadez-González A
    Mar Biotechnol (NY); 2006; 8(1):62-70. PubMed ID: 16453199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ennoblement, corrosion, and biofouling in brackish seawater: Comparison between six stainless steel grades.
    Huttunen-Saarivirta E; Rajala P; Marja-Aho M; Maukonen J; Sohlberg E; Carpén L
    Bioelectrochemistry; 2018 Apr; 120():27-42. PubMed ID: 29154214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of scale deposition on cathodic-protection performance in desalination plant conditions.
    Hodgkiess T; Najm-Mohammed NA
    Water Sci Technol; 2004; 49(2):221-8. PubMed ID: 14982184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus.
    Arun D; Vimala R; Devendranath Ramkumar K
    Bioelectrochemistry; 2020 Oct; 135():107546. PubMed ID: 32413811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel.
    Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R
    Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of Methanococcus maripaludis on the corrosion behavior of EH40 steel in seawater.
    Chen S; Deng H; Zhao Y; Lu S; Zhao Y; Cheng X; Liu G; Dou W; Chen J
    Bioelectrochemistry; 2021 Aug; 140():107824. PubMed ID: 33934051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm activity on corrosion of API 5L X65 steel weld bead.
    Liduino VS; Lutterbach MTS; Sérvulo EFC
    Colloids Surf B Biointerfaces; 2018 Dec; 172():43-50. PubMed ID: 30130636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion.
    Landoulsi J; Cooksey KE; Dupres V
    Biofouling; 2011 Nov; 27(10):1109-24. PubMed ID: 22050233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.