BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21819318)

  • 1. Emerging pathways and future targets for the molecular therapy of pancreatic cancer.
    Vaccaro V; Melisi D; Bria E; Cuppone F; Ciuffreda L; Pino MS; Gelibter A; Tortora G; Cognetti F; Milella M
    Expert Opin Ther Targets; 2011 Oct; 15(10):1183-96. PubMed ID: 21819318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy.
    McCarty MF
    Integr Cancer Ther; 2004 Dec; 3(4):349-80. PubMed ID: 15523106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Notch signaling in pancreatic cancer.
    Ristorcelli E; Lombardo D
    Expert Opin Ther Targets; 2010 May; 14(5):541-52. PubMed ID: 20392166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Notch signaling in pancreatic cancer patients--rationale for new therapy.
    Mysliwiec P; Boucher MJ
    Adv Med Sci; 2009; 54(2):136-42. PubMed ID: 19758972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biology of colorectal cancer.
    Saif MW; Chu E
    Cancer J; 2010; 16(3):196-201. PubMed ID: 20526096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy.
    Holcomb B; Yip-Schneider M; Schmidt CM
    Pancreas; 2008 Apr; 36(3):225-35. PubMed ID: 18362834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer.
    Nakashima H; Nakamura M; Yamaguchi H; Yamanaka N; Akiyoshi T; Koga K; Yamaguchi K; Tsuneyoshi M; Tanaka M; Katano M
    Cancer Res; 2006 Jul; 66(14):7041-9. PubMed ID: 16849549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting embryonic signaling pathways in cancer therapy.
    Harris PJ; Speranza G; Dansky Ullmann C
    Expert Opin Ther Targets; 2012 Jan; 16(1):131-45. PubMed ID: 22239436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy.
    Wang Z; Ahmad A; Li Y; Azmi AS; Miele L; Sarkar FH
    Anticancer Res; 2011 Apr; 31(4):1105-13. PubMed ID: 21508353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the pancreas and pancreatic cancer.
    Lewis BC
    Endocrinol Metab Clin North Am; 2006 Jun; 35(2):397-404, xi. PubMed ID: 16632101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core signaling pathways and new therapeutic targets in pancreatic cancer.
    You L; Chen G; Zhao YP
    Chin Med J (Engl); 2010 May; 123(9):1210-5. PubMed ID: 20529565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal transduction in human pancreatic cancer: roles of transforming growth factor beta, somatostatin receptors, and other signal intermediates.
    Li M; Becnel LS; Li W; Fisher WE; Chen C; Yao Q
    Arch Immunol Ther Exp (Warsz); 2005; 53(5):381-7. PubMed ID: 16314822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New treatment options for advanced pancreatic cancer.
    Middleton G; Ghaneh P; Costello E; Greenhalf W; Neoptolemos JP
    Expert Rev Gastroenterol Hepatol; 2008 Oct; 2(5):673-96. PubMed ID: 19072345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular pathogenesis of pancreatic cancer and clinical perspectives.
    Matthaios D; Zarogoulidis P; Balgouranidou I; Chatzaki E; Kakolyris S
    Oncology; 2011; 81(3-4):259-72. PubMed ID: 22116519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of NEMO/IKKγ for effective expansion of KRAS-induced precancerous lesions in the pancreas.
    Maier HJ; Wagner M; Schips TG; Salem HH; Baumann B; Wirth T
    Oncogene; 2013 May; 32(21):2690-5. PubMed ID: 22751123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging drugs in the treatment of pancreatic cancer.
    Mahalingam D; Kelly KR; Swords RT; Carew J; Nawrocki ST; Giles FJ
    Expert Opin Emerg Drugs; 2009 Jun; 14(2):311-28. PubMed ID: 19466902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale Baill, against pancreatic cancer in mice via inhibition of Akt activation.
    Wei WT; Chen H; Ni ZL; Liu HB; Tong HF; Fan L; Liu A; Qiu MX; Liu DL; Guo HC; Wang ZH; Lin SZ
    Int J Oncol; 2011 Dec; 39(6):1381-90. PubMed ID: 21805032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future strategies for targeted therapies and tailored patient management in pancreatic cancer.
    Ko AH
    Semin Oncol; 2007 Aug; 34(4):354-64. PubMed ID: 17674964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular biology of pancreatic cancer; oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective.
    Sakorafas GH; Tsiotou AG; Tsiotos GG
    Cancer Treat Rev; 2000 Feb; 26(1):29-52. PubMed ID: 10660490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drugs in preclinical and early-stage clinical development for pancreatic cancer.
    Asuthkar S; Rao JS; Gondi CS
    Expert Opin Investig Drugs; 2012 Feb; 21(2):143-52. PubMed ID: 22217246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.