These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 21819515)

  • 21. Plant cells under siege: plant immune system versus pathogen effectors.
    Asai S; Shirasu K
    Curr Opin Plant Biol; 2015 Dec; 28():1-8. PubMed ID: 26343014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance.
    Dodds PN; Rafiqi M; Gan PHP; Hardham AR; Jones DA; Ellis JG
    New Phytol; 2009; 183(4):993-1000. PubMed ID: 19558422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 454 Genome sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motif.
    Tian M; Win J; Savory E; Burkhardt A; Held M; Brandizzi F; Day B
    Mol Plant Microbe Interact; 2011 May; 24(5):543-53. PubMed ID: 21261462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A catalogue of the effector secretome of plant pathogenic oomycetes.
    Kamoun S
    Annu Rev Phytopathol; 2006; 44():41-60. PubMed ID: 16448329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions.
    Stukenbrock EH; McDonald BA
    Mol Plant Microbe Interact; 2009 Apr; 22(4):371-80. PubMed ID: 19271952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oomycetes, effectors, and all that jazz.
    Bozkurt TO; Schornack S; Banfield MJ; Kamoun S
    Curr Opin Plant Biol; 2012 Aug; 15(4):483-92. PubMed ID: 22483402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.
    Helliwell EE; Vega-Arreguín J; Shi Z; Bailey B; Xiao S; Maximova SN; Tyler BM; Guiltinan MJ
    Plant Biotechnol J; 2016 Mar; 14(3):875-86. PubMed ID: 26214158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The problem of how fungal and oomycete avirulence proteins enter plant cells.
    Ellis J; Catanzariti AM; Dodds P
    Trends Plant Sci; 2006 Feb; 11(2):61-3. PubMed ID: 16406302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell biology of plant-oomycete interactions.
    Hardham AR
    Cell Microbiol; 2007 Jan; 9(1):31-9. PubMed ID: 17081190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens.
    Panstruga R; Dodds PN
    Science; 2009 May; 324(5928):748-50. PubMed ID: 19423815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes.
    Sperschneider J; Dodds PN
    Mol Plant Microbe Interact; 2022 Feb; 35(2):146-156. PubMed ID: 34698534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Communication between filamentous pathogens and plants at the biotrophic interface.
    Yi M; Valent B
    Annu Rev Phytopathol; 2013; 51():587-611. PubMed ID: 23750888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host-targeting protein 1 (SpHtp1) from the oomycete Saprolegnia parasitica translocates specifically into fish cells in a tyrosine-O-sulphate-dependent manner.
    Wawra S; Bain J; Durward E; de Bruijn I; Minor KL; Matena A; Löbach L; Whisson SC; Bayer P; Porter AJ; Birch PR; Secombes CJ; van West P
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):2096-101. PubMed ID: 22308362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycoside hydrolases family 20 (GH20) represent putative virulence factors that are shared by animal pathogenic oomycetes, but are absent in phytopathogens.
    Olivera IE; Fins KC; Rodriguez SA; Abiff SK; Tartar JL; Tartar A
    BMC Microbiol; 2016 Oct; 16(1):232. PubMed ID: 27716041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis.
    Wang H; Wang S; Wang W; Xu L; Welsh LRJ; Gierlinski M; Whisson SC; Hemsley PA; Boevink PC; Birch PRJ
    Plant Cell; 2023 Jun; 35(7):2504-2526. PubMed ID: 36911990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fungal LysM effectors: extinguishers of host immunity?
    de Jonge R; Thomma BP
    Trends Microbiol; 2009 Apr; 17(4):151-7. PubMed ID: 19299132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Getting the most from the host: how pathogens force plants to cooperate in disease.
    Hok S; Attard A; Keller H
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1253-9. PubMed ID: 20636104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance.
    Birch PR; Boevink PC; Gilroy EM; Hein I; Pritchard L; Whisson SC
    Curr Opin Plant Biol; 2008 Aug; 11(4):373-9. PubMed ID: 18511334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes.
    Win J; Morgan W; Bos J; Krasileva KV; Cano LM; Chaparro-Garcia A; Ammar R; Staskawicz BJ; Kamoun S
    Plant Cell; 2007 Aug; 19(8):2349-69. PubMed ID: 17675403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RxLR Effectors: Master Modulators, Modifiers and Manipulators.
    Wang S; McLellan H; Boevink PC; Birch PRJ
    Mol Plant Microbe Interact; 2023 Dec; 36(12):754-763. PubMed ID: 37750829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.