These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 21819595)

  • 1. A retrosynthetic biology approach to metabolic pathway design for therapeutic production.
    Carbonell P; Planson AG; Fichera D; Faulon JL
    BMC Syst Biol; 2011 Aug; 5():122. PubMed ID: 21819595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrosynthetic design of heterologous pathways.
    Carbonell P; Planson AG; Faulon JL
    Methods Mol Biol; 2013; 985():149-73. PubMed ID: 23417804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms.
    Carbonell P; Fichera D; Pandit SB; Faulon JL
    BMC Syst Biol; 2012 Feb; 6():10. PubMed ID: 22309974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and optimization of synthetic pathways in metabolic engineering.
    Na D; Kim TY; Lee SY
    Curr Opin Microbiol; 2010 Jun; 13(3):363-70. PubMed ID: 20219419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prototyping of microbial chassis for the biomanufacturing of high-value chemical targets.
    Robinson CJ; Tellechea-Luzardo J; Carbonell P; Jervis AJ; Yan C; Hollywood KA; Dunstan MS; Currin A; Takano E; Scrutton NS
    Biochem Soc Trans; 2021 Jun; 49(3):1055-1063. PubMed ID: 34100907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A retrosynthetic biology approach to therapeutics: from conception to delivery.
    Planson AG; Carbonell P; Grigoras I; Faulon JL
    Curr Opin Biotechnol; 2012 Dec; 23(6):948-56. PubMed ID: 22475981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme Discovery: Enzyme Selection and Pathway Design.
    Carbonell P; Koch M; Duigou T; Faulon JL
    Methods Enzymol; 2018; 608():3-27. PubMed ID: 30173766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Robustness of Microbial Cell Factories.
    Gong Z; Nielsen J; Zhou YJ
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28857502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design.
    Karim AS; Dudley QM; Juminaga A; Yuan Y; Crowe SA; Heggestad JT; Garg S; Abdalla T; Grubbe WS; Rasor BJ; Coar DN; Torculas M; Krein M; Liew FE; Quattlebaum A; Jensen RO; Stuart JA; Simpson SD; Köpke M; Jewett MC
    Nat Chem Biol; 2020 Aug; 16(8):912-919. PubMed ID: 32541965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of bulk chemicals via novel metabolic pathways in microorganisms.
    Shin JH; Kim HU; Kim DI; Lee SY
    Biotechnol Adv; 2013 Nov; 31(6):925-35. PubMed ID: 23280013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial cell factories based on filamentous bacteria, yeasts, and fungi.
    Ding Q; Ye C
    Microb Cell Fact; 2023 Jan; 22(1):20. PubMed ID: 36717860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways.
    Hadadi N; Hatzimanikatis V
    Curr Opin Chem Biol; 2015 Oct; 28():99-104. PubMed ID: 26177079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering plant metabolism into microbes: from systems biology to synthetic biology.
    Xu P; Bhan N; Koffas MA
    Curr Opin Biotechnol; 2013 Apr; 24(2):291-9. PubMed ID: 22985679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Industrial systems biology.
    Otero JM; Nielsen J
    Biotechnol Bioeng; 2010 Feb; 105(3):439-60. PubMed ID: 19891008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing microbial communities to maximize the thermodynamic driving force for the production of chemicals.
    Bekiaris PS; Klamt S
    PLoS Comput Biol; 2021 Jun; 17(6):e1009093. PubMed ID: 34129600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the Microbial Production of Plant-Derived Anticancer Drugs.
    Courdavault V; O'Connor SE; Oudin A; Besseau S; Papon N
    Trends Cancer; 2020 Jun; 6(6):444-448. PubMed ID: 32459998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies in engineering sustainable biochemical synthesis through microbial systems.
    Song Y; Prather KLJ
    Curr Opin Chem Biol; 2024 Aug; 81():102493. PubMed ID: 38971129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preface for special issue on synthetic biology (2013)].
    Chen G
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1041-3. PubMed ID: 24364342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms.
    Czajka J; Wang Q; Wang Y; Tang YJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7427-7434. PubMed ID: 28884354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.