BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21819943)

  • 1. Yeasty clocks: dating genomic changes in yeasts.
    Rolland T; Dujon B
    C R Biol; 2011; 334(8-9):620-8. PubMed ID: 21819943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on synteny between yeasts and vertebrates.
    Drillon G; Fischer G
    C R Biol; 2011; 334(8-9):629-38. PubMed ID: 21819944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast genome evolution--the origin of the species.
    Scannell DR; Butler G; Wolfe KH
    Yeast; 2007 Nov; 24(11):929-42. PubMed ID: 17621376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.
    Armengol L; Pujana MA; Cheung J; Scherer SW; Estivill X
    Hum Mol Genet; 2003 Sep; 12(17):2201-8. PubMed ID: 12915466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast chromosomes have been significantly reshaped during their evolutionary history.
    Langkjaer RB; Nielsen ML; Daugaard PR; Liu W; Piskur J
    J Mol Biol; 2000 Dec; 304(3):271-88. PubMed ID: 11090273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem gene arrays, plastic chromosomal organizations.
    Despons L; Uzunov Z; Louis VL
    C R Biol; 2011; 334(8-9):639-46. PubMed ID: 21819945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Murine segmental duplications are hot spots for chromosome and gene evolution.
    Armengol L; Marquès-Bonet T; Cheung J; Khaja R; González JR; Scherer SW; Navarro A; Estivill X
    Genomics; 2005 Dec; 86(6):692-700. PubMed ID: 16256303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome evolution in yeasts.
    Dujon B; Sherman D; Fischer G; Durrens P; Casaregola S; Lafontaine I; De Montigny J; Marck C; Neuvéglise C; Talla E; Goffard N; Frangeul L; Aigle M; Anthouard V; Babour A; Barbe V; Barnay S; Blanchin S; Beckerich JM; Beyne E; Bleykasten C; Boisramé A; Boyer J; Cattolico L; Confanioleri F; De Daruvar A; Despons L; Fabre E; Fairhead C; Ferry-Dumazet H; Groppi A; Hantraye F; Hennequin C; Jauniaux N; Joyet P; Kachouri R; Kerrest A; Koszul R; Lemaire M; Lesur I; Ma L; Muller H; Nicaud JM; Nikolski M; Oztas S; Ozier-Kalogeropoulos O; Pellenz S; Potier S; Richard GF; Straub ML; Suleau A; Swennen D; Tekaia F; Wésolowski-Louvel M; Westhof E; Wirth B; Zeniou-Meyer M; Zivanovic I; Bolotin-Fukuhara M; Thierry A; Bouchier C; Caudron B; Scarpelli C; Gaillardin C; Weissenbach J; Wincker P; Souciet JL
    Nature; 2004 Jul; 430(6995):35-44. PubMed ID: 15229592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast evolution and comparative genomics.
    Liti G; Louis EJ
    Annu Rev Microbiol; 2005; 59():135-53. PubMed ID: 15877535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages.
    Bourque G; Zdobnov EM; Bork P; Pevzner PA; Tesler G
    Genome Res; 2005 Jan; 15(1):98-110. PubMed ID: 15590940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution.
    Dujon B
    Trends Genet; 2006 Jul; 22(7):375-87. PubMed ID: 16730849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast genome sequencing: the power of comparative genomics.
    Piskur J; Langkjaer RB
    Mol Microbiol; 2004 Jul; 53(2):381-9. PubMed ID: 15228521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 6: The genomes of lager yeasts.
    Bond U
    Adv Appl Microbiol; 2009; 69():159-82. PubMed ID: 19729094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of gene expression regulatory networks in yeasts.
    Lelandais G; Goudot C; Devaux F
    C R Biol; 2011; 334(8-9):655-61. PubMed ID: 21819947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ten years of the Génolevures Consortium: a brief history.
    Souciet JL;
    C R Biol; 2011; 334(8-9):580-4. PubMed ID: 21819937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering evolution to study speciation in yeasts.
    Delneri D; Colson I; Grammenoudi S; Roberts IN; Louis EJ; Oliver SG
    Nature; 2003 Mar; 422(6927):68-72. PubMed ID: 12621434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.
    Morel G; Sterck L; Swennen D; Marcet-Houben M; Onesime D; Levasseur A; Jacques N; Mallet S; Couloux A; Labadie K; Amselem J; Beckerich JM; Henrissat B; Van de Peer Y; Wincker P; Souciet JL; Gabaldón T; Tinsley CR; Casaregola S
    Sci Rep; 2015 Jun; 5():11571. PubMed ID: 26108467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population genomics of yeasts: towards a comprehensive view across a broad evolutionary scale.
    Peter J; Schacherer J
    Yeast; 2016 Mar; 33(3):73-81. PubMed ID: 26592376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional gel analysis of the proteome of lager brewing yeasts.
    Joubert R; Brignon P; Lehmann C; Monribot C; Gendre F; Boucherie H
    Yeast; 2000 Apr; 16(6):511-22. PubMed ID: 10790688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae.
    Antunovics Z; Nguyen HV; Gaillardin C; Sipiczki M
    FEMS Yeast Res; 2005 Dec; 5(12):1141-50. PubMed ID: 15982931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.