BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21819964)

  • 1. Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics.
    Horn JN; Sengillo JD; Lin D; Romo TD; Grossfield A
    Biochim Biophys Acta; 2012 Feb; 1818(2):212-8. PubMed ID: 21819964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the mechanism of antimicrobial lipopeptides with all-atom molecular dynamics.
    Horn JN; Romo TD; Grossfield A
    Biochemistry; 2013 Aug; 52(33):5604-10. PubMed ID: 23875688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers.
    Shahane G; Ding W; Palaiokostas M; Azevedo HS; Orsi M
    J Membr Biol; 2019 Oct; 252(4-5):317-329. PubMed ID: 31098677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity.
    Lin D; Grossfield A
    Biophys J; 2014 Oct; 107(8):1862-1872. PubMed ID: 25418167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating the antimicrobial mechanism of human β-defensin-3 with coarse-grained molecular dynamics.
    Zhao X; Yu H; Yang L; Li Q; Huang X
    J Biomol Struct Dyn; 2015; 33(11):2522-9. PubMed ID: 25562440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short arginine-rich lipopeptides: From self-assembly to antimicrobial activity.
    Sikorska E; Stachurski O; Neubauer D; Małuch I; Wyrzykowski D; Bauer M; Brzozowski K; Kamysz W
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2242-2251. PubMed ID: 30409520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the short cationic lipopeptides bacterial membrane disruptors? Structure-Activity Relationship and molecular dynamic evaluation.
    Greber KE; Zielińska J; Nierzwicki Ł; Ciura K; Kawczak P; Nowakowska J; Bączek T; Sawicki W
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):93-99. PubMed ID: 30463703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity.
    Lin D; Grossfield A
    Biophys J; 2015 Aug; 109(4):750-9. PubMed ID: 26287627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies.
    Sikorska E; Dawgul M; Greber K; Iłowska E; Pogorzelska A; Kamysz W
    Biochim Biophys Acta; 2014 Oct; 1838(10):2625-34. PubMed ID: 24978107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between fengycin and model bilayers quantified by coarse-grained molecular dynamics.
    Horn JN; Cravens A; Grossfield A
    Biophys J; 2013 Oct; 105(7):1612-23. PubMed ID: 24094402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of self-assembly on antimicrobial activity of double-chain short cationic lipopeptides.
    Stachurski O; Neubauer D; Małuch I; Wyrzykowski D; Bauer M; Bartoszewska S; Kamysz W; Sikorska E
    Bioorg Med Chem; 2019 Dec; 27(23):115129. PubMed ID: 31668583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations.
    Bond PJ; Khalid S
    Protein Pept Lett; 2010 Nov; 17(11):1313-27. PubMed ID: 20673230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational insight in the role of fusogenic lipopeptides at the onset of liposome fusion.
    Bulacu M; Sevink GJ
    Biochim Biophys Acta; 2015 Mar; 1848(3):848-58. PubMed ID: 25528473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inclusion of lipopeptides into the DMPC lipid bilayers prevents Aβ peptide insertion.
    Parikh N; Klimov DK
    Phys Chem Chem Phys; 2017 Apr; 19(15):10087-10098. PubMed ID: 28367578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.