These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21820033)

  • 41. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer.
    Wen S; Niu Y; Huang H
    Asian J Urol; 2020 Jul; 7(3):203-218. PubMed ID: 33024699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Androgen receptor acetylation sites differentially regulate gene control.
    Faus H; Haendler B
    J Cell Biochem; 2008 May; 104(2):511-24. PubMed ID: 18022799
    [TBL] [Abstract][Full Text] [Related]  

  • 43. p300-Mediated Acetylation of Histone Demethylase JMJD1A Prevents Its Degradation by Ubiquitin Ligase STUB1 and Enhances Its Activity in Prostate Cancer.
    Xu S; Fan L; Jeon HY; Zhang F; Cui X; Mickle MB; Peng G; Hussain A; Fazli L; Gleave ME; Dong X; Qi J
    Cancer Res; 2020 Aug; 80(15):3074-3087. PubMed ID: 32522824
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor.
    Kasina S; Macoska JA
    Mol Cell Endocrinol; 2012 Apr; 351(2):249-63. PubMed ID: 22245379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation.
    Mahajan NP; Liu Y; Majumder S; Warren MR; Parker CE; Mohler JL; Earp HS; Whang YE
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8438-43. PubMed ID: 17494760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repression of androgen receptor in prostate cancer cells by phenethyl isothiocyanate.
    Wang LG; Liu XM; Chiao JW
    Carcinogenesis; 2006 Oct; 27(10):2124-32. PubMed ID: 16704988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Post-Translational Modifications of Transcription Factors Harnessing the Etiology and Pathophysiology in Colonic Diseases.
    Hsu CY; Fu SH; Chien MW; Liu YW; Chen SJ; Sytwu HK
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32369982
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SUMO-3 enhances androgen receptor transcriptional activity through a sumoylation-independent mechanism in prostate cancer cells.
    Zheng Z; Cai C; Omwancha J; Chen SY; Baslan T; Shemshedini L
    J Biol Chem; 2006 Feb; 281(7):4002-12. PubMed ID: 16361251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer.
    Chmelar R; Buchanan G; Need EF; Tilley W; Greenberg NM
    Int J Cancer; 2007 Feb; 120(4):719-33. PubMed ID: 17163421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The hinge region in androgen receptor control.
    Clinckemalie L; Vanderschueren D; Boonen S; Claessens F
    Mol Cell Endocrinol; 2012 Jul; 358(1):1-8. PubMed ID: 22406839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling.
    Dirac AM; Bernards R
    Mol Cancer Res; 2010 Jun; 8(6):844-54. PubMed ID: 20501646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor.
    Kraus S; Gioeli D; Vomastek T; Gordon V; Weber MJ
    Cancer Res; 2006 Nov; 66(22):11047-54. PubMed ID: 17108144
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells.
    Rajabi H; Ahmad R; Jin C; Joshi MD; Guha M; Alam M; Kharbanda S; Kufe D
    Prostate; 2012 Nov; 72(15):1659-68. PubMed ID: 22473899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Post-translational modifications of the progesterone receptors.
    Abdel-Hafiz HA; Horwitz KB
    J Steroid Biochem Mol Biol; 2014 Mar; 140():80-9. PubMed ID: 24333793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Positive feedback loop mediated by protein phosphatase 1α mobilization of P-TEFb and basal CDK1 drives androgen receptor in prostate cancer.
    Liu X; Gao Y; Ye H; Gerrin S; Ma F; Wu Y; Zhang T; Russo J; Cai C; Yuan X; Liu J; Chen S; Balk SP
    Nucleic Acids Res; 2017 Apr; 45(7):3738-3751. PubMed ID: 28062857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calmodulin protects androgen receptor from calpain-mediated breakdown in prostate cancer cells.
    Sivanandam A; Murthy S; Chinnakannu K; Bai VU; Kim SH; Barrack ER; Menon M; Reddy GP
    J Cell Physiol; 2011 Jul; 226(7):1889-96. PubMed ID: 21506119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms.
    Periyasamy S; Warrier M; Tillekeratne MP; Shou W; Sanchez ER
    Endocrinology; 2007 Oct; 148(10):4716-26. PubMed ID: 17615153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer.
    Chatterjee B
    Mol Cell Biochem; 2003 Nov; 253(1-2):89-101. PubMed ID: 14619959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer.
    Mirkheshti N; Park S; Jiang S; Cropper J; Werner SL; Song CS; Chatterjee B
    Oncotarget; 2016 Sep; 7(38):62240-62254. PubMed ID: 27557496
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth.
    Fu M; Rao M; Wang C; Sakamaki T; Wang J; Di Vizio D; Zhang X; Albanese C; Balk S; Chang C; Fan S; Rosen E; Palvimo JJ; Jänne OA; Muratoglu S; Avantaggiati ML; Pestell RG
    Mol Cell Biol; 2003 Dec; 23(23):8563-75. PubMed ID: 14612401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.