BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21820057)

  • 21. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism.
    Bagautdinov B; Kunishima N
    J Mol Biol; 2007 Oct; 373(2):424-38. PubMed ID: 17825835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.
    Hu XQ; Guo PC; Ma JD; Li WF
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Nov; 69(Pt 11):1190-5. PubMed ID: 24192347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional studies of the yeast class II Hda1 histone deacetylase complex.
    Lee JH; Maskos K; Huber R
    J Mol Biol; 2009 Aug; 391(4):744-57. PubMed ID: 19573535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural comparison of the enzymatically active and inactive forms of delta crystallin and the role of histidine 91.
    Abu-Abed M; Turner MA; Vallée F; Simpson A; Slingsby C; Howell PL
    Biochemistry; 1997 Nov; 36(46):14012-22. PubMed ID: 9369472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of isoamyl acetate-hydrolyzing esterase from Saccharomyces cerevisiae reveals a novel active site architecture and the basis of substrate specificity.
    Ma J; Lu Q; Yuan Y; Ge H; Li K; Zhao W; Gao Y; Niu L; Teng M
    Proteins; 2011 Feb; 79(2):662-8. PubMed ID: 21069734
    [No Abstract]   [Full Text] [Related]  

  • 26. Structures of yeast Apa2 reveal catalytic insights into a canonical AP₄A phosphorylase of the histidine triad superfamily.
    Hou WT; Li WZ; Chen Y; Jiang YL; Zhou CZ
    J Mol Biol; 2013 Aug; 425(15):2687-98. PubMed ID: 23628156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties.
    Chen ZJ; Pudas R; Sharma S; Smart OS; Juffer AH; Hiltunen JK; Wierenga RK; Haapalainen AM
    J Mol Biol; 2008 Jun; 379(4):830-44. PubMed ID: 18479707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional analysis of bacterial flavin-containing monooxygenase reveals its ping-pong-type reaction mechanism.
    Cho HJ; Cho HY; Kim KJ; Kim MH; Kim SW; Kang BS
    J Struct Biol; 2011 Jul; 175(1):39-48. PubMed ID: 21527346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans: insights into sulfidotrophic respiration and detoxification.
    Cherney MM; Zhang Y; Solomonson M; Weiner JH; James MN
    J Mol Biol; 2010 Apr; 398(2):292-305. PubMed ID: 20303979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct oligomerization and NADPH binding modes observed between L. donovani and human quinone oxidoreductases.
    Vishwakarma C; Ansari A; Pratap JV
    Biochem Biophys Res Commun; 2024 Jan; 690():149096. PubMed ID: 37988924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimeric crystal structure of rabbit L-gulonate 3-dehydrogenase/lambda-crystallin: insights into the catalytic mechanism.
    Asada Y; Kuroishi C; Ukita Y; Sumii R; Endo S; Matsunaga T; Hara A; Kunishima N
    J Mol Biol; 2010 Sep; 401(5):906-20. PubMed ID: 20620150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of a putative NADPH-dependent oxidoreductase (GI: 18204011) from mouse at 2.10 A resolution.
    Levin I; Schwarzenbacher R; McMullan D; Abdubek P; Ambing E; Biorac T; Cambell J; Canaves JM; Chiu HJ; Dai X; Deacon AM; DiDonato M; Elsliger MA; Godzik A; Grittini C; Grzechnik SK; Hampton E; Jaroszewski L; Karlak C; Klock HE; Koesema E; Kreusch A; Kuhn P; Lesley SA; McPhillips TM; Miller MD; Morse A; Moy K; Ouyang J; Page R; Quijano K; Reyes R; Robb A; Sims E; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; von Delft F; Wang X; West B; Wolf G; Xu Q; Hodgson KO; Wooley J; Wilson IA
    Proteins; 2004 Aug; 56(3):629-33. PubMed ID: 15229897
    [No Abstract]   [Full Text] [Related]  

  • 34. Substrate specificity and mechanism from the structure of Pyrococcus furiosus galactokinase.
    Hartley A; Glynn SE; Barynin V; Baker PJ; Sedelnikova SE; Verhees C; de Geus D; van der Oost J; Timson DJ; Reece RJ; Rice DW
    J Mol Biol; 2004 Mar; 337(2):387-98. PubMed ID: 15003454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of the quinone oxidoreductase from Thermus thermophilus HB8 and its complex with NADPH: implication for NADPH and substrate recognition.
    Shimomura Y; Kakuta Y; Fukuyama K
    J Bacteriol; 2003 Jul; 185(14):4211-8. PubMed ID: 12837796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization.
    Tavladoraki P; Cervelli M; Antonangeli F; Minervini G; Stano P; Federico R; Mariottini P; Polticelli F
    Amino Acids; 2011 Apr; 40(4):1115-26. PubMed ID: 20839014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding.
    Faucher F; Cantin L; Pereira de Jésus-Tran K; Lemieux M; Luu-The V; Labrie F; Breton R
    J Mol Biol; 2007 Jun; 369(2):525-40. PubMed ID: 17442338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1.
    Xu Q; West AH
    J Mol Biol; 1999 Oct; 292(5):1039-50. PubMed ID: 10512701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insights into the catalytic mechanism of the yeast pyridoxal 5-phosphate synthase Snz1.
    Zhang X; Teng YB; Liu JP; He YX; Zhou K; Chen Y; Zhou CZ
    Biochem J; 2010 Dec; 432(3):445-50. PubMed ID: 20919991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.