BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21820283)

  • 1. Anti-biofouling properties of an amphoteric polymer brush constructed on a glass substrate.
    Kitano H; Kondo T; Kamada T; Iwanaga S; Nakamura M; Ohno K
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):455-62. PubMed ID: 21820283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sum frequency generation study on the structure of water in the vicinity of an amphoteric polymer brush.
    Kondo T; Gemmei-Ide M; Kitano H; Ohno K; Noguchi H; Uosaki K
    Colloids Surf B Biointerfaces; 2012 Mar; 91():215-8. PubMed ID: 22154097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-biofouling properties of a telomer brush with pendent glucosylurea groups.
    Kitano H; Hayashi A; Takakura H; Suzuki H; Kanayama N; Saruwatari Y
    Langmuir; 2009 Aug; 25(16):9361-8. PubMed ID: 19518093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image printing on the surface of anti-biofouling zwitterionic polymer brushes by ion beam irradiation.
    Kitano H; Suzuki H; Kondo T; Sasaki K; Iwanaga S; Nakamura M; Ohno K; Saruwatari Y
    Macromol Biosci; 2011 Apr; 11(4):557-64. PubMed ID: 21243650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling.
    Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D
    Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterning of photocleavable zwitterionic polymer brush fabricated on silicon wafer.
    Kamada T; Yamazawa Y; Nakaji-Hirabayashi T; Kitano H; Usui Y; Hiroi Y; Kishioka T
    Colloids Surf B Biointerfaces; 2014 Nov; 123():878-86. PubMed ID: 25466462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for UV-patterning with binary polymer brushes.
    Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K
    Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-biofouling property of well-defined concentrated polymer brushes.
    Yoshikawa C; Qiu J; Huang CF; Shimizu Y; Suzuki J; van den Bosch E
    Colloids Surf B Biointerfaces; 2015 Mar; 127():213-20. PubMed ID: 25679494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-responsive polymer brush constructed on a colloidal gold monolayer.
    Kitano H; Kago H; Matsuura K
    J Colloid Interface Sci; 2009 Mar; 331(2):343-50. PubMed ID: 19101682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers.
    Zhao YH; Zhu XY; Wee KH; Bai R
    J Phys Chem B; 2010 Feb; 114(7):2422-9. PubMed ID: 20121056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization.
    Kitano H; Kondo T; Suzuki H; Ohno K
    J Colloid Interface Sci; 2010 May; 345(2):325-31. PubMed ID: 20206360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxymethylbetaine copolymer layer covalently fixed to a glass substrate.
    Suzuki H; Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Matsuoka K; Saruwatari Y
    Colloids Surf B Biointerfaces; 2012 Jun; 94():107-13. PubMed ID: 22348985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of β-amyloid to sulfated sugar residues in a polymer brush.
    Kitano H; Saito D; Kamada T; Gemmei-Ide M
    Colloids Surf B Biointerfaces; 2012 May; 93():219-25. PubMed ID: 22305636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling.
    Chang Y; Shu SH; Shih YJ; Chu CW; Ruaan RC; Chen WY
    Langmuir; 2010 Mar; 26(5):3522-30. PubMed ID: 19947616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High capacity, charge-selective protein uptake by polyelectrolyte brushes.
    Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD
    Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentrated polymer brush-modified silica particle coating confers biofouling-resistance on modified materials.
    Yoshikawa C; Qiu J; Shimizu Y; Huang CF; Gelling OJ; van den Bosch E
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):272-277. PubMed ID: 27770891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes.
    Akkahat P; Kiatkamjornwong S; Yusa S; Hoven VP; Iwasaki Y
    Langmuir; 2012 Apr; 28(13):5872-81. PubMed ID: 22364521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual functional, polymeric self-assembled monolayers as a facile platform for construction of patterns of biomolecules.
    Park S; Lee KB; Choi IS; Langer R; Jon S
    Langmuir; 2007 Oct; 23(22):10902-5. PubMed ID: 17900199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells.
    Chernyy S; Jensen BE; Shimizu K; Ceccato M; Pedersen SU; Zelikin AN; Daasbjerg K; Iruthayaraj J
    J Colloid Interface Sci; 2013 Aug; 404():207-14. PubMed ID: 23711662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.