BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21820903)

  • 1. CH/π hydrogen bonds play a role in ligand recognition and equilibrium between active and inactive states of the β2 adrenergic receptor: an ab initio fragment molecular orbital (FMO) study.
    Ozawa T; Okazaki K; Kitaura K
    Bioorg Med Chem; 2011 Sep; 19(17):5231-7. PubMed ID: 21820903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of CH/π hydrogen bonds in recognition of the core motif in proline-recognition domains: an ab initio fragment molecular orbital study.
    Ozawa T; Okazaki K; Kitaura K
    J Comput Chem; 2011 Oct; 32(13):2774-82. PubMed ID: 21710635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
    Goetz A; Lanig H; Gmeiner P; Clark T
    J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study.
    Ozawa T; Okazaki K
    J Comput Chem; 2008 Dec; 29(16):2656-66. PubMed ID: 18484636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.
    Rosenbaum DM; Cherezov V; Hanson MA; Rasmussen SG; Thian FS; Kobilka TS; Choi HJ; Yao XJ; Weis WI; Stevens RC; Kobilka BK
    Science; 2007 Nov; 318(5854):1266-73. PubMed ID: 17962519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of CH/pi hydrogen bonds in rational drug design: An ab initio fragment molecular orbital study to leukocyte-specific protein tyrosine (LCK) kinase.
    Ozawa T; Tsuji E; Ozawa M; Handa C; Mukaiyama H; Nishimura T; Kobayashi S; Okazaki K
    Bioorg Med Chem; 2008 Dec; 16(24):10311-8. PubMed ID: 18977146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of an irreversible agonist-β(2) adrenoceptor complex.
    Rosenbaum DM; Zhang C; Lyons JA; Holl R; Aragao D; Arlow DH; Rasmussen SG; Choi HJ; Devree BT; Sunahara RK; Chae PS; Gellman SH; Dror RO; Shaw DE; Weis WI; Caffrey M; Gmeiner P; Kobilka BK
    Nature; 2011 Jan; 469(7329):236-40. PubMed ID: 21228876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.
    Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
    Rasmussen SG; Choi HJ; Fung JJ; Pardon E; Casarosa P; Chae PS; Devree BT; Rosenbaum DM; Thian FS; Kobilka TS; Schnapp A; Konetzki I; Sunahara RK; Gellman SH; Pautsch A; Steyaert J; Weis WI; Kobilka BK
    Nature; 2011 Jan; 469(7329):175-80. PubMed ID: 21228869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling.
    Casella I; Ambrosio C; Grò MC; Molinari P; Costa T
    Biochem J; 2011 Aug; 438(1):191-202. PubMed ID: 21561432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-binding affinity of alternative conformers of human β
    Dilcan G; Doruker P; Akten ED
    Chem Biol Drug Des; 2019 May; 93(5):883-899. PubMed ID: 30637937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies.
    Yuzlenko O; Kieć-Kononowicz K
    J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method.
    Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T
    J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying conformational changes of the beta(2) adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators.
    Reynolds KA; Katritch V; Abagyan R
    J Comput Aided Mol Des; 2009 May; 23(5):273-88. PubMed ID: 19148767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes.
    Katritch V; Reynolds KA; Cherezov V; Hanson MA; Roth CB; Yeager M; Abagyan R
    J Mol Recognit; 2009; 22(4):307-18. PubMed ID: 19353579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catechol-binding serines of beta(2)-adrenergic receptors control the equilibrium between active and inactive receptor states.
    Ambrosio C; Molinari P; Cotecchia S; Costa T
    Mol Pharmacol; 2000 Jan; 57(1):198-210. PubMed ID: 10617695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR.
    Liu JJ; Horst R; Katritch V; Stevens RC; Wüthrich K
    Science; 2012 Mar; 335(6072):1106-10. PubMed ID: 22267580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of the orthosteric ligands binding on the conformational dynamics of the B-2-adrenergic receptor by means of essential dynamics sampling simulation].
    Novikov GV; Sivozhelezov VS; Shaitan KV
    Mol Biol (Mosk); 2014; 48(3):463-79. PubMed ID: 25831896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.