BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 21821143)

  • 1. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry.
    Ahn WS; Antoniewicz MR
    Metab Eng; 2011 Sep; 13(5):598-609. PubMed ID: 21821143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism.
    Ahn WS; Antoniewicz MR
    Metab Eng; 2013 Jan; 15():34-47. PubMed ID: 23111062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-stationary 13C metabolic flux analysis of Chinese hamster ovary cells in batch culture using extracellular labeling highlights metabolic reversibility and compartmentation.
    Nicolae A; Wahrheit J; Bahnemann J; Zeng AP; Heinzle E
    BMC Syst Biol; 2014 Apr; 8():50. PubMed ID: 24773761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing clonal variation of monoclonal antibody-producing CHO cell lines using an in silico metabolomic platform.
    Ghorbaniaghdam A; Chen J; Henry O; Jolicoeur M
    PLoS One; 2014; 9(3):e90832. PubMed ID: 24632968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.
    Swarup A; Lu J; DeWoody KC; Antoniewicz MR
    Metab Eng; 2014 Jul; 24():173-80. PubMed ID: 24909362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data.
    Schaub J; Mauch K; Reuss M
    Biotechnol Bioeng; 2008 Apr; 99(5):1170-85. PubMed ID: 17972325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy.
    Goudar C; Biener R; Boisart C; Heidemann R; Piret J; de Graaf A; Konstantinov K
    Metab Eng; 2010 Mar; 12(2):138-49. PubMed ID: 19896555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase.
    Sengupta N; Rose ST; Morgan JA
    Biotechnol Bioeng; 2011 Jan; 108(1):82-92. PubMed ID: 20672285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.
    Ahn WS; Crown SB; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():72-78. PubMed ID: 27174718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells.
    Wahrheit J; Niklas J; Heinzle E
    Metab Eng; 2014 May; 23():9-21. PubMed ID: 24525334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (13)C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300.
    Cordova LT; Antoniewicz MR
    Metab Eng; 2016 Jan; 33():148-157. PubMed ID: 26100076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis.
    Jordà J; Suarez C; Carnicer M; ten Pierick A; Heijnen JJ; van Gulik W; Ferrer P; Albiol J; Wahl A
    BMC Syst Biol; 2013 Feb; 7():17. PubMed ID: 23448228
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Long CP; Au J; Gonzalez JE; Antoniewicz MR
    Metab Eng; 2016 Nov; 38():65-72. PubMed ID: 27343680
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolic analysis of the asparagine and glutamine dynamics in an industrial Chinese hamster ovary fed-batch process.
    Kirsch BJ; Bennun SV; Mendez A; Johnson AS; Wang H; Qiu H; Li N; Lawrence SM; Bak H; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Mar; 119(3):807-819. PubMed ID: 34786689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing pyruvate kinase muscle expression in Chinese hamster ovary cells curbs lactogenic behavior by altering glycolysis, gating pyruvate generation, and increasing pyruvate flux into the TCA cycle.
    Tang D; Sandoval W; Liu P; Lam C; Snedecor B; Misaghi S
    Biotechnol Prog; 2021 Sep; 37(5):e3193. PubMed ID: 34288605
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Templeton N; Xu S; Roush DJ; Chen H
    Metab Eng; 2017 Nov; 44():126-133. PubMed ID: 28951188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Updates to a
    Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA
    Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.